Academia.eduAcademia.edu

Outline

Generalized Kähler Manifolds and Off-shell Supersymmetry

2006, Communications in Mathematical Physics

https://doi.org/10.1007/S00220-006-0149-3

Abstract

We solve the long standing problem of finding an off-shell supersymmetric formulation for a general N = (2, 2) nonlinear two dimensional sigma model. Geometrically the problem is equivalent to proving the existence of special coordinates; these correspond to particular superfields that allow for a superspace description. We construct and explain the geometric significance of the generalized Kähler potential for any generalized Kähler manifold; this potential is the superspace Lagrangian.

References (20)

  1. S. J. . Gates, C. M. Hull and M. Roček, "Twisted Multiplets And New Supersym- metric Nonlinear Sigma Models," Nucl. Phys. B248 (1984) 157.
  2. T. Buscher, U. Lindström and M. Roček, "New Supersymmetric Sigma Models With Wess-Zumino Terms," Phys. Lett. B202, 94 (1988).
  3. A. Sevrin and J. Troost, "Off-shell formulation of N = 2 non-linear sigma-models," Nucl. Phys. B492 (1997) 623 [arXiv:hep-th/9610102].
  4. J. Bogaerts, A. Sevrin, S. van der Loo and S. Van Gils, "Properties of semichiral superfields," Nucl. Phys. B562 (1999) 277 [arXiv:hep-th/9905141].
  5. T. L. Curtright and C. K. Zachos, "Geometry, Topology And Supersymmetry In Nonlinear Models," Phys. Rev. Lett. 53, 1799 (1984).
  6. P. S. Howe and G. Sierra, "Two-Dimensional Supersymmetric Nonlinear Sigma Models With Torsion," Phys. Lett. B148, 451 (1984).
  7. S. Lyakhovich and M. Zabzine, "Poisson geometry of sigma models with extended supersymmetry," Phys. Lett. B548 (2002) 243 [arXiv:hep-th/0210043].
  8. N. Hitchin, "Generalized Calabi-Yau manifolds," Q. J. Math. 54 (2003), no. 3, 281 308, [arXiv:math.DG/0209099].
  9. M. Gualtieri, "Generalized complex geometry," Oxford University DPhil thesis, [arXiv:math.DG/0401221].
  10. U. Lindström, "Generalized N = (2,2) supersymmetric non-linear sigma models," Phys. Lett. B587, 216 (2004) [arXiv:hep-th/0401100].
  11. U. Lindström, R. Minasian, A. Tomasiello and M. Zabzine, "Generalized com- plex manifolds and supersymmetry," Commun. Math. Phys. 257, 235 (2005) [arXiv:hep-th/0405085].
  12. U. Lindström, M. Roček, R. von Unge and M. Zabzine, "Generalized Kaehler geom- etry and manifest N = (2,2) supersymmetric nonlinear sigma-models," JHEP 0507 (2005) 067 [arXiv:hep-th/0411186].
  13. I. T. Ivanov, B. B. Kim and M. Roček, "Complex structures, duality and WZW models in extended superspace," Phys. Lett. B343 (1995) 133 [arXiv:hep-th/9406063].
  14. A. Sevrin and J. Troost, "The geometry of supersymmetric sigma-models," [arXiv:hep-th/9610103].
  15. M. T. Grisaru, M. Massar, A. Sevrin and J. Troost, "The quantum geom- etry of N = (2,2) non-linear sigma-models," Phys. Lett. B412, 53 (1997) [arXiv:hep-th/9706218].
  16. N. Hitchin, "Instantons, Poisson structures and generalized Kähler geometry," [arXiv:math.DG/0503432].
  17. V. I. Arnold, "Mathematical methods of classical mechanics," Translated from the Russian by K. Vogtmann and A. Weinstein. Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989. xvi+508 pp.
  18. U. Lindström and M. Roček, private communication, in preparation.
  19. N. J. Hitchin, A. Karlhede, U. Lindström and M. Roček, "Hyperkähler Metrics And Supersymmetry," Commun. Math. Phys. 108 (1987) 535.
  20. I. Vaisman, "Lectures on the Geometry of Poisson Manifolds" Progress in Mathe- matics, Vol 118 (Birkhäuser, Basel, 1994).