Generalized Kähler Manifolds and Off-shell Supersymmetry
2006, Communications in Mathematical Physics
https://doi.org/10.1007/S00220-006-0149-3Abstract
We solve the long standing problem of finding an off-shell supersymmetric formulation for a general N = (2, 2) nonlinear two dimensional sigma model. Geometrically the problem is equivalent to proving the existence of special coordinates; these correspond to particular superfields that allow for a superspace description. We construct and explain the geometric significance of the generalized Kähler potential for any generalized Kähler manifold; this potential is the superspace Lagrangian.
References (20)
- S. J. . Gates, C. M. Hull and M. Roček, "Twisted Multiplets And New Supersym- metric Nonlinear Sigma Models," Nucl. Phys. B248 (1984) 157.
- T. Buscher, U. Lindström and M. Roček, "New Supersymmetric Sigma Models With Wess-Zumino Terms," Phys. Lett. B202, 94 (1988).
- A. Sevrin and J. Troost, "Off-shell formulation of N = 2 non-linear sigma-models," Nucl. Phys. B492 (1997) 623 [arXiv:hep-th/9610102].
- J. Bogaerts, A. Sevrin, S. van der Loo and S. Van Gils, "Properties of semichiral superfields," Nucl. Phys. B562 (1999) 277 [arXiv:hep-th/9905141].
- T. L. Curtright and C. K. Zachos, "Geometry, Topology And Supersymmetry In Nonlinear Models," Phys. Rev. Lett. 53, 1799 (1984).
- P. S. Howe and G. Sierra, "Two-Dimensional Supersymmetric Nonlinear Sigma Models With Torsion," Phys. Lett. B148, 451 (1984).
- S. Lyakhovich and M. Zabzine, "Poisson geometry of sigma models with extended supersymmetry," Phys. Lett. B548 (2002) 243 [arXiv:hep-th/0210043].
- N. Hitchin, "Generalized Calabi-Yau manifolds," Q. J. Math. 54 (2003), no. 3, 281 308, [arXiv:math.DG/0209099].
- M. Gualtieri, "Generalized complex geometry," Oxford University DPhil thesis, [arXiv:math.DG/0401221].
- U. Lindström, "Generalized N = (2,2) supersymmetric non-linear sigma models," Phys. Lett. B587, 216 (2004) [arXiv:hep-th/0401100].
- U. Lindström, R. Minasian, A. Tomasiello and M. Zabzine, "Generalized com- plex manifolds and supersymmetry," Commun. Math. Phys. 257, 235 (2005) [arXiv:hep-th/0405085].
- U. Lindström, M. Roček, R. von Unge and M. Zabzine, "Generalized Kaehler geom- etry and manifest N = (2,2) supersymmetric nonlinear sigma-models," JHEP 0507 (2005) 067 [arXiv:hep-th/0411186].
- I. T. Ivanov, B. B. Kim and M. Roček, "Complex structures, duality and WZW models in extended superspace," Phys. Lett. B343 (1995) 133 [arXiv:hep-th/9406063].
- A. Sevrin and J. Troost, "The geometry of supersymmetric sigma-models," [arXiv:hep-th/9610103].
- M. T. Grisaru, M. Massar, A. Sevrin and J. Troost, "The quantum geom- etry of N = (2,2) non-linear sigma-models," Phys. Lett. B412, 53 (1997) [arXiv:hep-th/9706218].
- N. Hitchin, "Instantons, Poisson structures and generalized Kähler geometry," [arXiv:math.DG/0503432].
- V. I. Arnold, "Mathematical methods of classical mechanics," Translated from the Russian by K. Vogtmann and A. Weinstein. Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989. xvi+508 pp.
- U. Lindström and M. Roček, private communication, in preparation.
- N. J. Hitchin, A. Karlhede, U. Lindström and M. Roček, "Hyperkähler Metrics And Supersymmetry," Commun. Math. Phys. 108 (1987) 535.
- I. Vaisman, "Lectures on the Geometry of Poisson Manifolds" Progress in Mathe- matics, Vol 118 (Birkhäuser, Basel, 1994).