Semichiral fields on S 2 and generalized Kähler geometry
2016, Journal of High Energy Physics
https://doi.org/10.1007/JHEP01(2016)060Abstract
We study a class of two-dimensional N = (2, 2) supersymmetric gauge theories, given by semichiral multiplets coupled to the usual vector multiplet. In the UV, these theories are traditional gauge theories deformed by a gauged Wess-Zumino term. In the IR, they give rise to nonlinear sigma models on noncompact generalized Kähler manifolds, which contain a three-form field H and whose metric is not Kähler. We place these theories on S 2 and compute their partition function exactly with localization techniques. We find that the contribution of instantons to the partition function that we define is insensitive to the deformation, and discuss our results from the point of view of the generalized Kähler target space.
References (69)
- V. Pestun, "Localization of Gauge Theory on a Four-sphere and Supersymmetric Wilson Loops," Commun.Math.Phys. 313 (2012) 71-129, arXiv:0712.2824 [hep-th].
- E. Witten, "Topological Sigma Models," Commun.Math.Phys. 118 (1988) 411-449.
- E. Witten, "Mirror Manifolds and Topological Field Theory," arXiv:hep-th/9112056.
- F. Benini and S. Cremonesi, "Partition Functions of N =(2, 2) Gauge Theories on S 2 and Vortices," Commun.Math.Phys. 334 (2015) 1483-1527, arXiv:1206.2356 [hep-th].
- N. Doroud, J. Gomis, B. Le Floch, and S. Lee, "Exact Results in D = 2 Supersymmetric Gauge Theories," JHEP 1305 (2013) 093, arXiv:1206.2606 [hep-th].
- J. Gomis and S. Lee, "Exact Kähler Potential from Gauge Theory and Mirror Symmetry," JHEP 1304 (2013) 019, arXiv:1210.6022 [hep-th].
- A. Gadde and S. Gukov, "2d Index and Surface Operators," JHEP 1403 (2014) 080, arXiv:1305.0266 [hep-th].
- F. Benini, R. Eager, K. Hori, and Y. Tachikawa, "Elliptic Genera of Two-dimensional N =2 Gauge Theories with Rank-one Gauge Groups," Lett.Math.Phys. 104 (2014) 465-493, arXiv:1305.0533 [hep-th].
- S. Sugishita and S. Terashima, "Exact Results in Supersymmetric Field Theories on Manifolds with Boundaries," JHEP 1311 (2013) 021, arXiv:1308.1973 [hep-th].
- D. Honda and T. Okuda, "Exact Results for Boundaries and Domain Walls in 2d Supersymmetric Theories," JHEP 1509 (2015) 140, arXiv:1308.2217 [hep-th].
- K. Hori and M. Romo, "Exact Results In Two-Dimensional (2, 2) Supersymmetric Gauge Theories With Boundary," arXiv:1308.2438 [hep-th].
- F. Benini, R. Eager, K. Hori, and Y. Tachikawa, "Elliptic Genera of 2d N =2 Gauge Theories," Commun.Math.Phys. 333 (2015) 1241-1286, arXiv:1308.4896 [hep-th].
- N. Doroud and J. Gomis, "Gauge Theory Dynamics and Kähler Potential for Calabi-Yau Complex Moduli," JHEP 1312 (2013) 099, arXiv:1309.2305 [hep-th].
- H. Kim, S. Lee, and P. Yi, "Exact Partition Functions on RP 2 and Orientifolds," JHEP 1402 (2014) 103, arXiv:1310.4505 [hep-th].
- S. Murthy, "A Holomorphic Anomaly in the Elliptic Genus," JHEP 1406 (2014) 165, arXiv:1311.0918 [hep-th].
- S. K. Ashok, N. Doroud, and J. Troost, "Localization and Real Jacobi Forms," JHEP 1404 (2014) 119, arXiv:1311.1110 [hep-th].
- F. Benini, D. S. Park, and P. Zhao, "Cluster Algebras from Dualities of 2d N = (2, 2) Quiver Gauge Theories," Commun.Math.Phys. 340 (2015) no. 1, 47-104, arXiv:1406.2699 [hep-th].
- J. Gomis and B. Le Floch, "M2-brane Surface Operators and Gauge Theory Dualities in Toda," arXiv:1407.1852 [hep-th].
- F. Benini and A. Zaffaroni, "A topologically Twisted Index for Three-dimensional Supersymmetric Theories," JHEP 1507 (2015) 127, arXiv:1504.03698 [hep-th].
- C. Closset, S. Cremonesi, and D. S. Park, "The Equivariant A-twist and Gauged Linear Sigma Models on the Two-sphere," JHEP 1506 (2015) 076, arXiv:1504.06308 [hep-th].
- E. Witten, "Phases of N=2 Theories in Two-dimensions," Nucl.Phys. B403 (1993) 159-222, arXiv:hep-th/9301042.
- H. Jockers, V. Kumar, J. M. Lapan, D. R. Morrison, and M. Romo, "Two-Sphere Partition Functions and Gromov-Witten Invariants," Commun.Math.Phys. 325 (2014) 1139-1170, arXiv:1208.6244 [hep-th].
- Y. Honma and M. Manabe, "Exact Kähler Potential for Calabi-Yau Fourfolds," JHEP 1305 (2013) 102, arXiv:1302.3760 [hep-th].
- D. S. Park and J. Song, "The Seiberg-Witten Kähler Potential as a Two-Sphere Partition Function," JHEP 1301 (2013) 142, arXiv:1211.0019 [hep-th].
- K. Hori and C. Vafa, "Mirror Symmetry," arXiv:hep-th/0002222.
- K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, and E. Zaslow, Mirror Symmetry, vol. 1 of Clay Mathematics Monographs. Clay Mathematics Institute, Cambridge MA, 2003.
- P. M. Crichigno and M. Roček, "On Gauged Linear Sigma Models with Torsion," JHEP 1509 (2015) 207, arXiv:1506.00335 [hep-th].
- W. Merrell, L. A. Pando Zayas, and D. Vaman, "Gauged (2,2) Sigma Models and Generalized Kähler Geometry," JHEP 0712 (2007) 039, arXiv:hep-th/0610116.
- U. Lindström, M. Roček, I. Ryb, R. von Unge, and M. Zabzine, "New N =(2, 2) Vector Multiplets," JHEP 0708 (2007) 008, arXiv:0705.3201 [hep-th].
- U. Lindström, M. Roček, I. Ryb, R. von Unge, and M. Zabzine, "T-duality and Generalized Kähler Geometry," JHEP 0802 (2008) 056, arXiv:0707.1696 [hep-th].
- W. Merrell and D. Vaman, "T-duality, Quotients and Generalized Kähler Geometry," Phys.Lett. B665 (2008) 401-408, arXiv:0707.1697 [hep-th].
- P. M. Crichigno, "The Semi-Chiral Quotient, Hyperkahler Manifolds and T-Duality," JHEP 1210 (2012) 046, arXiv:1112.1952 [hep-th].
- P. M. Crichigno, Aspects of Supersymmetric Field Theories and Complex Geometry. PhD thesis, Stony Brook Univeristy, 2013.
- A. Kapustin and A. Tomasiello, "The General (2,2) Gauged Sigma Model with Three-form Flux," JHEP 0711 (2007) 053, arXiv:hep-th/0610210.
- S. J. Gates Jr., C. M. Hull, and M. Roček, "Twisted Multiplets and New Supersymmetric Nonlinear Sigma Models," Nucl.Phys. B248 (1984) 157.
- M. Gualtieri, Generalized Complex Geometry. PhD thesis, Oxford University, 2003. arXiv:math/0401221 [math.DG].
- M. Gualtieri, "Generalized Kähler Geometry," Comm.Math.Phys. 331 (2014) 297-331.
- M. Zabzine, "Lectures on Generalized Complex Geometry and Supersymmetry," Archivum Math. 42 (2006) 119-146, arXiv:hep-th/0605148.
- P. Koerber, "Lectures on Generalized Complex Geometry for Physicists," Fortsch.Phys. 59 (2011) 169-242, arXiv:1006.1536 [hep-th].
- U. Lindström, M. Roček, R. von Unge, and M. Zabzine, "Generalized Kähler Manifolds and Off-shell Supersymmetry," Commun.Math.Phys. 269 (2007) 833-849, arXiv:hep-th/0512164.
- I. T. Ivanov, B. Kim, and M. Roček, "Complex Structures, Duality and WZW Models in Extended Superspace," Phys.Lett. B343 (1995) 133-143, arXiv:hep-th/9406063.
- S. Lyakhovich and M. Zabzine, "Poisson Geometry of Sigma Models with Extended Supersymmetry," Phys.Lett. B548 (2002) 243-251, arXiv:hep-th/0210043.
- N. Halmagyi and A. Tomasiello, "Generalized Kähler Potentials from Supergravity," Commun.Math.Phys. 291 (2009) 1-30, arXiv:0708.1032 [hep-th].
- A. Kapustin and Y. Li, "Topological Sigma-models with H-flux and Twisted Generalized Complex Manifolds," Adv.Theor.Math.Phys. 11 (2007) 269-290, arXiv:hep-th/0407249.
- N. Hitchin, "Generalized Calabi-Yau Manifolds," Quart.J.Math. 54 (2003) 281-308, arXiv:math/0209099 [math.DG].
- M. T. Grisaru, M. Massar, A. Sevrin, and J. Troost, "The Quantum Geometry of N =(2, 2) Nonlinear Sigma Models," Phys.Lett. B412 (1997) 53-58, arXiv:hep-th/9706218.
- C. M. Hull, U. Lindström, M. Roček, R. von Unge, and M. Zabzine, "Generalized Calabi-Yau Metric and Generalized Monge-Ampere Equation," JHEP 1008 (2010) 060, arXiv:1005.5658 [hep-th].
- C. M. Hull, U. Lindström, L. Melo dos Santos, R. von Unge, and M. Zabzine, "Euclidean Supersymmetry, Twisting and Topological Sigma Models," JHEP 0806 (2008) 031, arXiv:0805.3321 [hep-th].
- T. Buscher, U. Lindström, and M. Roček, "New Supersymmetric σ Models With Wess-Zumino Terms," Phys.Lett. B202 (1988) 94-98.
- K. Hori and D. Tong, "Aspects of Non-Abelian Gauge Dynamics in Two-Dimensional N =(2, 2) Theories," JHEP 0705 (2007) 079, arXiv:hep-th/0609032.
- U. Lindström, M. Roček, I. Ryb, R. von Unge, and M. Zabzine, "Nonabelian Generalized Gauge Multiplets," JHEP 0902 (2009) 020, arXiv:0808.1535 [hep-th].
- C. Closset and S. Cremonesi, "Comments on N =(2, 2) Supersymmetry on Two-manifolds," JHEP 1407 (2014) 075, arXiv:1404.2636 [hep-th].
- G. Festuccia and N. Seiberg, "Rigid Supersymmetric Theories in Curved Superspace," JHEP 1106 (2011) 114, arXiv:1105.0689 [hep-th].
- G. Bonelli, A. Sciarappa, A. Tanzini, and P. Vasko, "Vortex Partition Functions, Wall Crossing and Equivariant Gromov-Witten Invariants," Commun.Math.Phys. 333 (2015) 717-760, arXiv:1307.5997 [hep-th].
- A. Bredthauer, U. Lindström, J. Persson, and M. Zabzine, "Generalized Kähler Geometry from Supersymmetric Sigma Models," Lett.Math.Phys. 77 (2006) 291-308, arXiv:hep-th/0603130.
- W.-Y. Chuang, "Topological Twisted Sigma Model with H-flux Revisited," J.Phys. A41 (2008) 115402, arXiv:hep-th/0608119.
- R. Zucchini, "The bi-Hermitian Topological Sigma Model," JHEP 0612 (2006) 039, arXiv:hep-th/0608145.
- C. M. Hull, U. Lindström, L. Melo dos Santos, R. von Unge, and M. Zabzine, "Topological Sigma Models with H-Flux," JHEP 0809 (2008) 057, arXiv:0803.1995 [hep-th].
- P. Candelas and X. C. de la Ossa, "Comments on Conifolds," Nucl.Phys. B342 (1990) 246-268.
- I. R. Klebanov and E. Witten, "Superconformal Field Theory on Three-branes at a Calabi-Yau Singularity," Nucl.Phys. B536 (1998) 199-218, arXiv:hep-th/9807080.
- P. Candelas, X. C. de la Ossa, P. S. Green, and L. Parkes, "A Pair of Calabi-Yau Manifolds as an Exactly Soluble Superconformal Theory," Nucl.Phys. B359 (1991) 21-74.
- R. Gopakumar and C. Vafa, "On the Gauge Theory / Geometry Correspondence," Adv.Theor.Math.Phys. 3 (1999) 1415-1443, arXiv:hep-th/9811131.
- H. Ooguri and C. Vafa, "Knot Invariants and Topological Strings," Nucl.Phys. B577 (2000) 419-438, arXiv:hep-th/9912123.
- G. R. Cavalcanti and M. Gualtieri, "A Surgery for Generalized Complex Structures on 4-manifolds," J.Diff.Geom. 76 (2007) 35-43, arXiv:math/0602333 [math.DG].
- G. R. Cavalcanti and M. Gualtieri, "Blow-up of Generalized Complex 4-manifolds," J.Topol. 2 (2009) 840-864, arXiv:0806.0872 [math.SG].
- M. T. Grisaru, M. Massar, A. Sevrin, and J. Troost, "Some Aspects of N =(2, 2), D = 2 Supersymmetry," Fortsch.Phys. 47 (1999) 301-307, arXiv:hep-th/9801080.
- J. Bogaerts, A. Sevrin, S. van der Loo, and S. Van Gils, "Properties of Semichiral Superfields," Nucl.Phys. B562 (1999) 277-290, arXiv:hep-th/9905141.
- M. Gualtieri, "Generalized Complex Geometry," Ann.Math. 174 (2011) 75-123, arXiv:math/0703298 [math.DG].
- A. Sevrin, W. Staessens, and D. Terryn, "The Generalized Kähler Geometry of N =(2, 2) WZW-models," JHEP 1112 (2011) 079, arXiv:1111.0551 [hep-th].