Academia.eduAcademia.edu

Outline

Linearizing generalized Kähler geometry

2007, Journal of High Energy Physics

https://doi.org/10.1088/1126-6708/2007/04/061

Abstract

The geometry of the target space of an N = (2, 2) supersymmetry sigma-model carries a generalized Kähler structure. There always exists a real function, the generalized Kähler potential K, that encodes all the relevant local differential geometry data: the metric, the B-field, etc. Generically this data is given by nonlinear functions of the second derivatives of K. We show that, at least locally, the nonlinearity on any generalized Kähler manifold can be explained as arising from a quotient of a space without this nonlinearity.

References (18)

  1. A. Bredthauer, U. Lindström, J. Persson and M. Zabzine, "Generalized Kähler geometry from supersymmetric sigma-models," Lett. Math. Phys. 77 (2006) 291 [arXiv:hep-th/0603130].
  2. T. Buscher, U. Lindström and M. Roček, "New supersymmetric sigma-models with Wess-Zumino terms," Phys. Lett. B 202 (1988) 94.
  3. S. J. Gates, C. M. Hull and M. Roček, "Twisted Multiplets And New Supersym- metric Nonlinear Sigma Models," Nucl. Phys. B 248 (1984) 157.
  4. M. T. Grisaru, M. Massar, A. Sevrin and J. Troost, "The quantum geom- etry of N = (2,2) nonlinear sigma-models," Phys. Lett. B412, 53 (1997) [arXiv:hep-th/9706218].
  5. M. Gualtieri, "Generalized complex geometry," Oxford University DPhil thesis, [arXiv:math.DG/0401221].
  6. N. Hitchin, "Generalized Calabi-Yau manifolds," Q. J. Math. 54 (2003), no. 3, 281 308, [arXiv:math.DG/0209099].
  7. N. Hitchin, "Instantons, Poisson structures and generalized Kähler geometry," Commun. Math. Phys. 265, 131 (2006) [arXiv:math.dg/0503432].
  8. N. J. Hitchin, A. Karlhede, U. Lindström and M. Roček, "Hyperkähler Metrics And Supersymmetry," Commun. Math. Phys. 108 (1987) 535.
  9. C. M. Hull and B. J. Spence, "The gauged nonlinear sigma-model with Wess- Zumino term," Phys. Lett. B 232 (1989) 204; "The Geometry of the gauged sigma- model with Wess-Zumino term," Nucl. Phys. B 353 (1991) 379.
  10. U. Lindström, I. T. Ivanov and M. Roček, "New N=4 superfields and sigma mod- els," Phys. Lett. B 328 (1994) 49 [arXiv:hep-th/9401091].
  11. U. Lindström, M. Roček, R. von Unge and M. Zabzine, "Generalized Kaehler geom- etry and manifest N = (2,2) supersymmetric nonlinear sigma-models," JHEP 0507 (2005) 067 [arXiv:hep-th/0411186].
  12. U. Lindström, M. Roček, R. von Unge and M. Zabzine, "Generalized Kähler manifolds and off-shell supersymmetry," Commun. Math. Phys. 269 (2007) 833 [arXiv:hep-th/0512164].
  13. S. Lyakhovich and M. Zabzine, "Poisson geometry of sigma-models with extended supersymmetry," Phys. Lett. B 548 (2002) 243 [arXiv:hep-th/0210043].
  14. M. Roček, C. h. Ahn, K. Schoutens and A. Sevrin, "Superspace WZW models and black holes," arXiv:hep-th/9110035.
  15. M. Roček, K. Schoutens and A. Sevrin, "Off-Shell WZW Models In Extended Superspace," Phys. Lett. B 265, 303 (1991).
  16. M. Roček and E. P. Verlinde, "Duality, quotients, and currents," Nucl. Phys. B 373 (1992) 630 [arXiv:hep-th/9110053].
  17. A. Sevrin and J. Troost, "Off-shell formulation of N = 2 nonlinear sigma-models," Nucl. Phys. B 492, 623 (1997) [arXiv:hep-th/9610102].
  18. I. Vaisman, "Lectures on the Geometry of Poisson Manifolds" Progress in Mathe- matics, Vol 118 (Birkhäuser, Basel, 1994).