The Generalised Complex Geometry of (p, q) Hermitian Geometries
Communications in Mathematical Physics
https://doi.org/10.1007/S00220-019-03488-3Abstract
We define (p, q) Hermitian geometry as the target space geometry of the two dimensional (p, q) supersymmetric sigma model. This includes generalised Kähler geometry for (2, 2), generalised hyperkähler geometry for (4, 2), strong Kähler with torsion geometry for (2, 1) and strong hyperkähler with torsion geometry for (4, 1). We provide a generalised complex geometry formulation of hermitian geometry, generalising Gualtieri's formulation of the (2, 2) case. Our formulation involves a chiral version of generalised complex structure and we provide explicit formulae for the map to generalised geometry. Contents
References (28)
- Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
- p, q) Hermitian Geometry . . . . . . . . . . . . . . . . . . . . . . . . .
- Generalised Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . .
- Generalised Complex Geometry . . . . . . . . . . . . . . . . . . . . . . .
- Half Generalised Complex Structures . . . . . . . . . . . . . . . . . . . .
- Algebraic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
- Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
- Strong Kähler with Torsion and Half Generalised Complex Structures . . .
- p, q) Generalised Complex Geometry . . . . . . . . . . . . . . . . . . .
- Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References
- Gates Jr., S.J., Hull, C.M., Roček, M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nucl. Phys. B 248, 157 (1984)
- Hitchin, N.: Generalized Calabi-Yau manifolds. Q. J. Math. Oxf. Ser. 54, 271 (2003). arXiv:math/0209099 [math-dg]
- Gualtieri, M.: Generalized complex geometry. arXiv:math/0401221 [math-dg]
- Hull, C.M., Witten, E.: Supersymmetric sigma models and the heterotic string. Phys. Lett. B 160, 398 (1985)
- Hull, C.M.: σ model beta functions and string compactifications. Nucl. Phys. B 267, 266 (1986)
- Cavalcanti, G.R.: Reduction of metric structures on Courant algebroids. arXiv:1203.0497v1 [math.DG] (2012)
- Cavalcanti, G.R.: Hodge theory and deformations of SKT manifolds. arXiv:1203.0493 [math.DG]
- Hull, C.M.: Lectures on Nonlinear Sigma Models and Strings. Lectures Given at the Vancouver Advanced Research Workshop, published in Super Field Theories (Plenum, New York), edited by H. Lee and G. Kunstatter (1988)
- Bursztyn, H., Cavalcanti, G.R., Gualtieri, M.: "Generalized Kähler and hyper-Kähler quotients" Poisson geometry in mathematics and physics. Contemp. Math. 450, 61-77, American Mathematical Society, Providence, RI (2008) arXiv:math/0702104
- Howe, P.S., Papadopoulos, G.: Twistor spaces for HKT manifolds. Phys. Lett. B 379, 80 (1996). arXiv:hep-th/9602108
- Buscher, T., Lindström, U., Roček, M.: New supersymmetric σ models with Wess-Zumino terms. Phys. Lett. B 202, 94 (1988)
- Lindström, U., Roček, M., von Unge, R., Zabzine, M.: Generalized Kähler manifolds and off-shell su- persymmetry. Commun. Math. Phys. 269, 833 (2007). arXiv:hep-th/0512164
- Lindström, U., Roček, M., von Unge, R., Zabzine, M.: Linearizing generalized Kähler geometry. JHEP 0704, 061 (2007). arXiv:hep-th/0702126
- Lindström, U., Roček, M., von Unge, R., Zabzine, M.: A potential for generalized Kähler geometry. IRMA Lect. Math. Theor. Phys. 16, 263 (2010). arXiv:hep-th/0703111
- Bredthauer, A., Lindström, U., Persson, J., Zabzine, M.: Generalized Kähler geometry from supersym- metric sigma models. Lett. Math. Phys. 77, 291 (2006). arXiv:hep-th/0603130
- Bischoff, F., Gualtieri, M., Zabzine, M.: Morita equivalence and the generalized Kähler potential, arXiv:1804.05412 [math.DG]
- Hull, C., Lindström, U.: All (4, 1): sigma models with (4, q) off-shell supersymmetry. JHEP 1703, 042 (2017). arXiv:1611.09884 [hep-th]
- Hull, C., Lindström, U.: All (4, 0): sigma models with (4, 0) off-shell supersymmetry. JHEP 1708, 129 (2017). arXiv:1707.01918 [hep-th]