All (4,0): Sigma models with (4,0) off-shell supersymmetry
2017, Journal of High Energy Physics
https://doi.org/10.1007/JHEP08(2017)129Abstract
Off-shell (4, 0) supermultiplets in 2-dimensions are formulated. These are used to construct sigma models whose target spaces are vector bundles over manifolds that are hyperkähler with torsion. The off-shell supersymmetry implies that the complex structures are simultaneously integrable and allows us to write actions using extended superspace and projective superspace, giving an explicit construction of the target space geometries.
References (23)
- C.M. Hull and E. Witten, Supersymmetric σ-models and the heterotic string, Phys. Lett. 160B (1985) 398 [INSPIRE].
- P.S. Howe and G. Papadopoulos, Further remarks on the geometry of two-dimensional nonlinear σ models, Class. Quant. Grav. 5 (1988) 1647 [INSPIRE].
- C. M. Hull, Lectures on nonlinear sigma models and strings, in Super field theories, H. Lee and G. Kunstatter eds., Plenum, New York U.S.A. (1988).
- T. Lhallabi and E.H. Saidi, The (4, 0) and (4, 4) supersymmetric nonlinear σ models in the D = 2 harmonic superspace, Int. J. Mod. Phys. A 3 (1988) 187 [INSPIRE].
- S.J. Gates, Jr. and L. Rana, Manifest (4, 0) supersymmetry, σ-models and the ADHM instanton construction, Phys. Lett. B 345 (1995) 233 [hep-th/9411091] [INSPIRE].
- P.S. Howe and G. Papadopoulos, Finiteness and anomalies in (4, 0) supersymmetric σ-models, Nucl. Phys. B 381 (1992) 360 [hep-th/9203070] [INSPIRE].
- JHEP08(2017)129
- E. Sokatchev and K.S. Stelle, Finiteness of (4, 0) supersymmetric σ models, Class. Quant. Grav. 4 (1987) 501 [INSPIRE].
- C. Hull and U. Lindström, All (4, 1): σ-models with (4, q) off-shell supersymmetry, JHEP 03 (2017) 042 [arXiv:1611.09884] [INSPIRE].
- S.J. Gates, Jr., C.M. Hull and M. Roček, Twisted multiplets and new supersymmetric nonlinear σ-models, Nucl. Phys. B 248 (1984) 157 [INSPIRE].
- M. Dine and N. Seiberg, (2, 0) superspace, Phys. Lett. B 180 (1986) 364 [INSPIRE].
- A. Karlhede, U. Lindström and M. Roček, Selfinteracting tensor multiplets in N = 2 superspace, Phys. Lett. 147B (1984) 297 [INSPIRE].
- U. Lindström and M. Roček, New Hyper-Kähler metrics and new supermultiplets, Commun. Math. Phys. 115 (1988) 21 [INSPIRE].
- T. Buscher, U. Lindström and M. Roček, New supersymmetric σ models with Wess-Zumino terms, Phys. Lett. B 202 (1988) 94 [INSPIRE].
- U. Lindström, I.T. Ivanov and M. Roček, New N = 4 superfields and σ-models, Phys. Lett. B 328 (1994) 49 [hep-th/9401091] [INSPIRE].
- U. Lindström and M. Roček, N = 2 super Yang-Mills theory in projective superspace, Commun. Math. Phys. 128 (1990) 191 [INSPIRE].
- F. Gonzalez-Rey, M. Roček, S. Wiles, U. Lindström and R. von Unge, Feynman rules in N = 2 projective superspace: 1. Massless hypermultiplets, Nucl. Phys. B 516 (1998) 426 [hep-th/9710250] [INSPIRE].
- U. Lindström and M. Roček, Properties of hyper-Kähler manifolds and their twistor spaces, Commun. Math. Phys. 293 (2010) 257 [arXiv:0807.1366] [INSPIRE].
- S.M. Kuzenko, Lectures on nonlinear σ-models in projective superspace, J. Phys. A 43 (2010) 443001 [arXiv:1004.0880] [INSPIRE].
- A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2 matter, Yang-Mills and supergravity theories in harmonic superspace, Class. Quant. Grav. 1 (1984) 469 [Erratum ibid. 2 (1985) 127] [INSPIRE].
- A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E.S. Sokatchev, Harmonic superspace, Cambridge University Press, Cambridge, U.K. (2001).
- P.S. Howe and G.G. Hartwell, A superspace survey, Class. Quant. Grav. 12 (1995) 1823 [INSPIRE].
- G.G. Hartwell and P.S. Howe, (N, p, q) harmonic superspace, Int. J. Mod. Phys. A 10 (1995) 3901 [hep-th/9412147] [INSPIRE].