Academia.eduAcademia.edu

Outline

Generic supersymmetric hyper-Kähler sigma models in

2007, Physics Letters B

https://doi.org/10.1016/J.PHYSLETB.2006.12.014

Abstract

We analyse the geometry of four-dimensional bosonic manifolds arising within the context of N = 4, D = 1 supersymmetry. We demonstrate that both cases of general hyper-Kähler manifolds, i.e. those with translation or rotational isometries, may be supersymmetrized in the same way. We start from a generic N=4 supersymmetric three-dimensional action and perform dualization of the coupling constant, initially present in the action. As a result, we end up with explicit component actions for N = 4, D = 1 nonlinear sigma-models with hyper-Kähler geometry (with both types of isometries) in the target space. In the case of hyper-Kähler geometry with translational isometry we find that the action possesses an additional hidden N = 4 supersymmetry, and therefore it is N = 8 supersymmetric one.

References (28)

  1. B. Zumino, Phys. Lett. B87 (1979) 203.
  2. L. Alvarez-Gaume, D.Z. Freedman, Commun. Math. Phys., 80 (1981) 443.
  3. E.A. Ivanov, S.O. Krivonos, J.Phys. A17 (1984) L671; Teor. Mat. Fiz. 63 (1985) 230;
  4. S.J. Gates, C.M. Hull, M. Rocek, Nucl. Phys. B248 (1984) 157.
  5. P.S. Howe, G. Papadopoulos, Nucl. Phys. B289 (1987) 264; Class. Quant. Grav. 5 (1988) 1647;
  6. N.J. Hitchin, A. Karlhede, U. Lindsröm, M. Roček, Commun. Math. Phys. 108 (1987) 535.
  7. G.W. Gibbons, G. Papadopoulos, K.S. Stelle, Nucl. Phys. B508 (1997) 623.
  8. S. Bellucci, E. Ivanov, A. Sutulin, Nucl. Phys. B722 (2005) 297; Erratum-ibid. B747 (2006) 464 hep-th/0504185;
  9. S. Bellucci, S. Krivonos, A. Sutulin, Phys. Lett. B605 (2005) 406, hep-th/0410276.
  10. E. Ivanov, S. Krivonos, O. Lechtenfeld, Class. Quant. Grav. 21 (2004) 1031, hep-th/0310299.
  11. S. Krivonos, A. Shcherbakov, Phys. Lett. B637 (2006) 119, hep-th/0602113;
  12. Č. Burdik, S. Krivonos, A. Shcherbakov, "Hyper-Kahler geometries and nonlinear supermultiplets", hep-th/0610009.
  13. F. Delduc, E. Ivanov, Nucl. Phys. B753 (2006) 211, hep-th/0605211.
  14. S. Bellucci, S. Krivonos, "Geometry of N=4, d=1 nonlinear supermultiplet", hep-th/0611104;
  15. S. Bellucci, A. Nersessian, Phys. Rev. D73 (2006) 107701, hep-th/0512165.
  16. S. Bellucci, S. Krivonos, "Supersymmetric Mechanics in Superspace", hep-th/0602199, published in Supersymmetric Mechanics -Vol. 1, Lect. Notes Phys. 698 (Springer, Berlin Heidelberg 2006), DOI 10.1007/b11730286, p. 47.
  17. I. Bakas, K. Sfetsos, Phys. Lett. B349 (1995) 448, hep-th/9502065.
  18. S. Hawking, Phys. Lett. A60 (1977) 81;
  19. G. Gibbons, S. Hawking, Commun. Math. Phys. 66 (1979) 291;
  20. K. Tod, R. Ward, Proc. Soc. Lond. A368 (1979) 411.
  21. C. Boyer, J. Finley, J. Math. Phys. 23 (1982)1126;
  22. J. Gegenberg, A. Das, Gen. Rel. Grav. 16 (1984) 817.
  23. J. P. Gauntlett, C. J. Kim, K. M. Lee, P. Yi, Phys. Rev. D63 (2001) 065020, hep-th/0008031.
  24. S. Bellucci, S. Krivonos, A. Shcherbakov, Phys. Rev. D73 (2006) 085014, hep-th/0604056.
  25. E. Ivanov, S. Krivonos, V. Leviant, J. Phys. A: Math. Gen. 22 (1989) 4201.
  26. S. Bellucci, E. Ivanov, S. Krivonos, O. Lechtenfeld, Nucl. Phys. B699 (2004) 226, hep-th/0406015; ibid., Nucl. Phys. B684 (2004) 321, hep-th/0312322.
  27. G.W. Gibbons, C.M. Warnick, "Hidden symmetry of hyperbolic monopole motion", hep-th/0609051.
  28. S. Krivonos, A. Nersessian, V. Ohanyan, "Multi-center MICZ-Kepler system, super- symmetry and integrability", in preparation.