Academia.eduAcademia.edu

Outline

Gauging the Poisson sigma model

2008, Journal of High Energy Physics

https://doi.org/10.1088/1126-6708/2008/05/018

Abstract

We show how to carry out the gauging of the Poisson sigma model in an AKSZ inspired formulation by coupling it to a generalization of the Weil model worked out in ref. [31]. We call the resulting gauged field theory, Poisson-Weil sigma model. We study the BV cohomology of the model and show its relation to Hamiltonian basic and equivariant Poisson cohomology. As an application, we carry out the gauge fixing of the pure Weil model and of the Poisson-Weil model. In the first case, we obtain the 2-dimensional version of Donaldson-Witten topological gauge theory, describing the moduli space of flat connections on a closed surface. In the second case, we recover the gauged A topological sigma model worked out by Baptista describing the moduli space of solutions of the so-called vortex equations.

References (53)

  1. J. Marsden and A. Weinstein, "Reduction of symplectic manifolds with sym- metry", Rep. Math. Phys. 5 (1974) 121.
  2. E. Witten, "Phases of N = 2 theories in two dimensions", Nucl. Phys. B 403 (1993) 159 [arXiv:hep-th/9301042].
  3. E. Witten, "The Verlinde algebra and the cohomology of the Grassmannian", arXiv:hep-th/9312104.
  4. S. J. Gates, C. M. Hull and M. Roček, "Twisted multiplets and new super- symmetric nonlinear sigma models," Nucl. Phys. B 248 (1984) 157.
  5. C. M. Hull, G. Papadopoulos and B. J. Spence, "Gauge symmetries for (p, q) supersymmetric sigma models", Nucl. Phys. B 363 (1991) 593.
  6. N. Hitchin, "Generalized Calabi-Yau manifolds", Q. J. Math. 54 (2003), no. 3, 281 [arXiv:math.DG/0209099].
  7. M. Gualtieri, "Generalized complex geometry", Oxford University Ph. D. Thesis, United Kingdom (2003), arXiv:math.DG/0401221.
  8. U. Lindstrom, M. Roček, R. von Unge and M. Zabzine, "Generalized Kaehler manifolds and off-shell supersymmetry", Commun. Math. Phys. 269 (2007) 833 [arXiv:hep-th/0512164].
  9. W. Merrell, L. A. P. Zayas and D. Vaman, "Gauged (2,2) sigma models and generalized Kaehler geometry", arXiv:hep-th/0610116.
  10. A. Kapustin and A. Tomasiello, "The general (2,2) gauged sigma model with three-form flux", JHEP 0711 (2007) 053 [arXiv:hep-th/0610210].
  11. E. Witten, "Topological sigma models", Commun. Math. Phys. 118 (1988) 411.
  12. E. Witten, "Mirror manifolds and topological field theory", in "Essays on mirror manifolds", ed. S. T. Yau, International Press, Hong Kong, (1992) 120 [arXiv:hep-th/9112056].
  13. A. Kapustin, "Topological strings on noncommutative manifolds", IJGMMP 1 nos. 1 & 2 (2004) 49 [arXiv:hep-th/0310057].
  14. A. Kapustin and Y. Li, "Topological sigma-models with H-flux and twisted generalized complex manifolds", arXiv:hep-th/0407249.
  15. R. Zucchini, "The biHermitian topological sigma model", JHEP 0612 (2006) 039 [arXiv:hep-th/0608145].
  16. R. Zucchini, "BiHermitian supersymmetric quantum mechanics", Class. Quant. Grav. 24 (2007) 2073 [arXiv:hep-th/0611308].
  17. W. y. Chuang, "Topological twisted sigma model with H-flux revisited" arXiv:hep-th/0608119.
  18. J. M. Baptista, "Vortex equations in abelian gauged sigma-models", Com- mun. Math. Phys. 261 (2006) 161 [arXiv:math/0411517].
  19. J. M. Baptista, "A topological gauged sigma-model", Adv. Theor. Math. Phys. 9 (2005) 1007 [arXiv:hep-th/0502152].
  20. J. M. Baptista, "Twisting gauged non-linear sigma-models", arXiv:0707.2786 [hep-th].
  21. U. Lindstrom, R. Minasian, A. Tomasiello and M. Zabzine, "Generalized complex manifolds and supersymmetry", Commun. Math. Phys. 257 (2005) 235 [arXiv:hep-th/0405085].
  22. U. Lindstrom, "Generalized complex geometry and supersymmetric non- linear sigma models", arXiv:hep-th/0409250.
  23. R. Zucchini, "A sigma model field theoretic realization of Hitchin's general- ized complex geometry", JHEP 0411 (2004) 045 [arXiv:hep-th/0409181].
  24. R. Zucchini, "Generalized complex geometry, generalized branes and the Hitchin sigma model", JHEP 0503 (2005) 022 [arXiv:hep-th/0501062].
  25. V. Pestun, "Topological strings in generalized complex space", arXiv:hep-th/0603145.
  26. S. Guttenberg, "Brackets, sigma models and integrability of generalized com- plex structures", JHEP 0706 (2007) 004 [arXiv:hep-th/0609015].
  27. I. A. Batalin and G. A. Vilkovisky, "Gauge algebra and quantization", Phys. Lett. B 102 (1981) 27.
  28. I. A. Batalin and G. A. Vilkovisky, "Quantization of gauge theories with linearly dependent generators", Phys. Rev. D 28 (1983) 2567 (Erratum-ibid. D 30 (1984) 508).
  29. M. Alexandrov, M. Kontsevich, A. Schwartz and O. Zaboronsky, "The Ge- ometry of the master equation and topological quantum field theory", Int. J. Mod. Phys. A 12 (1997) 1405 [arXiv:hep-th/9502010].
  30. R. Zucchini, "A topological sigma model of biKaehler geometry", JHEP 0601 (2006) 041 [arXiv:hep-th/0511144].
  31. R. Zucchini, "The Hitchin Model, Poisson-quasi-Nijenhuis Geometry and Symmetry Reduction", JHEP 0710 (2007) 075 [arXiv:0706.1289 [hep-th]].
  32. N. Ikeda, "Two-dimensional gravity and nonlinear gauge theory", Annals Phys. 235 (1994) 435, [arXiv:hep-th/9312059].
  33. P. Schaller and T. Strobl, "Poisson structure induced (topological) field the- ories", Mod. Phys. Lett. A 9 (1994) 3129 [arXiv:hep-th/9405110].
  34. A. S. Cattaneo and G. Felder, "A path integral approach to the Kont- sevich quantization formula", Commun. Math. Phys. 212 (2000) 591 [arXiv:math.qa/9902090].
  35. A. S. Cattaneo and G. Felder, "On the AKSZ formulation of the Poisson sigma model", Lett. Math. Phys. 56 (2001) 163 [arXiv:math.qa/0102108].
  36. E. Witten, "On quantum gauge theories in two-dimensions", Commun. Math. Phys. 141 (1991) 153.
  37. E. Witten, "Two-dimensional gauge theories revisited", J. Geom. Phys. 9 (1992) 303 [arXiv:hep-th/9204083].
  38. H. Cartan, "Notions d'algèbre différentielle; applications aux groupes de Lie et aux variétés où opère un group de Lie", Colloque de Topologie, C.B.R.M. Bruxelles (1950) 15.
  39. H. Cartan, "La transgression dans un group e de Lie et dans un espace fibrè principal", Colloque de Topologie, C.B.R.M. Bruxelles (1950) 57.
  40. J. E. Marsden and T. S. Ratiu, "Reduction of Poisson manifolds", Lett. in Math. Phys. 11 (1986) 161.
  41. I. Vaisman, "Lectures on the Geometry of Poisson Manifolds", Progress in Mathematics, vol. 118, Birkhauser Verlag, Basel, Boston, Berlin (1994).
  42. V. Ginzburg, "Equivariant Poisson cohomology and a spectral se- quence associated with a moment map", Int. J. Math. 10 (1999) 977 [math.DG/ 9611102].
  43. F. C. Kirwan, "Cohomology of Quotients in Symplectic and Algebraic Ge- ometry", Princeton University Press, (1984).
  44. F. Bonechi and M. Zabzine, "Poisson sigma model on the sphere", arXiv: 0706.3164 [hep-th].
  45. K. Cieliebak, A. R. Gaio and D. A. Salamon, "J-holomorphic curves, mo- ment maps, and invariants of Hamiltonian group actions", Internat. Math. Res. Notices 16 (2000) 831 [math.SG/9909122].
  46. K. Cieliebak, R. A. Gaio, I. Mundet i Riera and D. A. Salamon, "The sym- plectic vortex equations and invariants of Hamiltonian group actions", J. Symplectic Geom. 1 (2002) 543 [math.SG/0111176].
  47. R. Gaio and D. A. Salamon, "Gromov-Witten invariants of symplec- tic quotients and adiabatic limits", J. Symplectic Geom. 3 (2005) 55 [math.SG/0106157].
  48. I. Mundet i Riera, Hamiltonian Gromov-Witten invariants", Topology 42 (2003) 525 [math.SG/0002121].
  49. I. Mundet i Riera and G. Tian, "Compactification of the moduli space of twisted holomorphic maps", math.SG/0404407.
  50. I. Mundet i Riera, "Yang-Mills-Higgs theory for symplectic fibrations", U.A.M. Ph.D. Thesis, Spain (1999), math.SG/9912150.
  51. I. Calvo, F. Falceto and D. Garcia-Alvarez, "Topological Poisson sigma mod- els on Poisson-Lie groups", JHEP 0310 (2003) 033 [arXiv:hep-th/0307178].
  52. I. Calvo and F. Falceto, "Dual branes in topological sigma models over Lie groups: BF-theory and non-factorizable Lie bialgebras", JHEP 0604, 058 (2006) [arXiv:hep-th/0511212].
  53. F. Bonechi and M. Zabzine, "Poisson sigma model over group manifolds," J. Geom. Phys. 54 (2005) 173 [arXiv:hep-th/0311213].