Academia.eduAcademia.edu

Outline

Observation of coherent elastic neutrino-nucleus scattering

2017, Science

https://doi.org/10.1126/SCIENCE.AAO0990

Abstract

A 14.6-kilogram sodium-doped CsI scintillator is used to detect a neutrino scattering process with a 6.7σ confidence level.

References (83)

  1. F. J. Hasert et al., Observation of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment. Phys. Lett. B 46, 138 (1973).
  2. D. Z. Freedman, Coherent effects of a weak neutral current. Phys. Rev. D 9, 1389 (1974).
  3. A. Drukier, L. Stodolsky, Principles and applications of a neutral-current detector for neutrino physics and astronomy. Phys. Rev. D 30, 2295 (1984).
  4. A. J. Anderson, J. M. Conrad, E. Figueroa-Feliciano, C. Ignarra, G. Karagiorgi, K. Scholberg, M. H. Shaevitz, J. Spitz, Measuring active-to-sterile neutrino oscillations with neutral current coherent neutrino-nucleus scattering. Phys. Rev. D 86, 013004 (2012).
  5. B. Dutta, Y. Gao, A. Kubik, R. Mahapatra, N. Mirabolfathi, L. E. Strigari, J. W. Walker, Sensitivity to oscillation with a sterile fourth generation neutrino from ultralow threshold neutrino-nucleus coherent scattering. Phys. Rev. D 94, 093002 (2016).
  6. T. S. Kosmas, D. K. Papoulias, M. Tórtola, J. W. F. Valle, Probing light sterile neutrino signatures at reactor and spallation neutron source neutrino experiments. https://arxiv.org/abs/1703.00054 (2017).
  7. A. C. Dodd, E. Papageorgiu, S. Ranfone, The effect of a neutrino magnetic moment on nuclear excitation processes. Phys. Lett. B 266, 434 (1991).
  8. T. S. Kosmas, O. G. Miranda, D. K. Papoulias, M. Tórtola, J. W. F. Valle, Probing neutrino magnetic moments at the spallation neutron source facility. Phys. Rev. D 92, 013011 (2015).
  9. J. Barranco, O. G. Miranda, T. I. Rashba, Sensitivity of low energy neutrino experiments to physics beyond the Standard Model. Phys. Rev. D 76, 073008 (2007).
  10. P. deNiverville, M. Pospelov, A. Ritz, Light new physics in coherent neutrino-nucleus scattering experiments. Phys. Rev. D 92, 095005 (2015).
  11. B. Dutta, R. Mahapatra. L. E. Strigari, J. W. Walker, Sensitivity to Z-prime and nonstandard neutrino interactions from ultralow threshold neutrino-nucleus coherent scattering. Phys. Rev. D 93, 013015 (2016).
  12. K. Patton, J. Engel, G. C. McLaughlin, N. Schunck, Neutrino-nucleus coherent scattering as a probe of neutron density distributions. Phys. Rev. C 86, 024612 (2012).
  13. L. M. Krauss, Low-energy neutrino detection and precision tests of the Standard Model. Phys. Lett. B 269, 407 (1991).
  14. L. Stodolsky, Some neutrino events of the 21 st century. Paper presented at Neutrino Astrophysics, Ringberg Castle, Tegernsee, Germany, 20-24 October 1997. https://arxiv.org/abs/astro-ph/9801320v1 (1998).
  15. Y. Kim, Detection of antineutrinos for reactor monitoring. Nucl. Eng. Tech. 48, 285 (2016).
  16. J. R. Wilson, Coherent neutrino scattering and stellar collapse. Phys. Rev. Lett. 32, 849 (1974).
  17. D. N. Schramm, W. D. Arnett, Neutral currents and supernovas. Phys. Rev. Lett. 34, 113 (1975).
  18. D. Z. Freedman, D. N. Schramm, D. L. Tubbs, The weak neutral current and its effects in stellar collapse. Ann. Rev. Nucl. Sci. 27, 167 (1977).
  19. J. Billard, E. Figueroa-Feliciano, L. Strigari, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments. Phys. Rev. D 89, 023524 (2014).
  20. B. Cabrera, L. M. Krauss, F. Wilczek, Bolometric detection of neutrinos. Phys. Rev. Lett. 55, 25 (1985).
  21. C. Braggio, G. Bressi, G. Carugno, E. Feltrin, G. Galeazzi, Massive silicon or germanium detectors at cryogenic temperature. Nucl. Instr. Meth. A 568, 412 (2006).
  22. J. A. Formaggio, E. Figueroa-Feliciano, A. J. Anderson, Sterile neutrinos, coherent scattering, and oscillometry measurements with low-temperature bolometers. Phys. Rev. D 85, 013009 (2012).
  23. S. A. Golubkov et al., Investigation of the internal amplification effect on planar (p + -n-n + ) structures made of high-resistivity silicon. Instr. Exp. Tech. 47, 799 (2004).
  24. P. S. Barbeau, J. I. Collar, O. Tench, Large-mass ultralow noise germanium detectors: performance and applications in neutrino and astroparticle physics. JCAP 09, 009 (2007).
  25. A. Aguilar-Arevalo et al., The CONNIE experiment. J. Phys: Conf. Ser. 761, 012057 (2016).
  26. C. J. Horowitz, K. J. Coakley, D. N. McKinsey, Supernova observation via neutrino-nucleus elastic scattering in the CLEAN detector. Phys. Rev. D68, 023005 (2003).
  27. A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, R. Snopkov, Y. Tikhonov, V. A. Kudryavtsev, P. K. Lightfoot, N. J. C. Spooner, A two-phase argon avalanche detector operated in a single electron counting mode. Nucl. Instr. Meth. A 574, 493 (2007).
  28. D. Yu. Akimov et al., Prospects for observation of neutrino-nuclear neutral current coherent scattering with two-phase xenon emission detector. J. Inst. 8, P10023 (2013).
  29. T. H. Joshi, S. Sangiorgio, A. Bernstein, M. Foxe, C. Hagmann, I. Jovanovic, K. Kazkaz, V. Mozin, E. B. Norman, S. V. Pereverzev, F. Rebassoo, P. Sorensen, First measurement of the ionization yield of nuclear recoils in liquid argon. Phys. Rev. Lett. 112, 171303 (2014).
  30. S. J. Brice et al., A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target. Phys. Rev. D 89, 072004 (2014).
  31. J. I. Collar, N. E. Fields, M. Hai, T. W. Hossbach, J. L. Orrell, C. T. Overman, G. Perumpilly, B. Scholz, Coherent neutrino-nucleus scattering detection with a CsI[Na] scintillator at the SNS spallation source. Nucl. Instr. Meth. A 773, 56 (2015).
  32. F. T. Avignone III, Y. V. Efremenko, Neutrino-nucleus cross-section measurements at intense, pulsed spallation sources. J. Phys. G: Nucl. Part. Phys. 29, 2615 (2003).
  33. K. Scholberg, Prospects for measuring coherent neutrino-nucleus elastic scattering at a stopped-pion neutrino source. Phys. Rev. D73, 033005 (2006).
  34. Materials and methods are available as supplementary materials at the Science website.
  35. C. L. Cowan Jr., F. Reines, F. B. Harrison, H. W. Kruse , A. D. McGuire, Detection of the free neutrino: a confirmation. Science 124, 103 (1956).
  36. References (36)-(84)
  37. N. E. Fields, "C o sI: Development of a low threshold detector for the observation of coherent elastic neutrino-nucleus scattering", Ph.D. thesis, University of Chicago (2014).
  38. Proteus, Chagrin Falls, Ohio. Crystal grown by Amcrys, Kharkov, Ukraine.
  39. K. Nakamura, Y. Hamana, Y. Ishigami, T. Matsui, Latest bialkali photocathode with ultra high sensitivity. Nucl. Instr. Meth. A623, 276 (2010).
  40. J. Amare et al., Cosmogenic radionuclide production in NaI[Tl] crystals. JCAP 02, 046 (2015).
  41. H. W. Bertini, Intra-nuclear cascade calculation of the secondary nucleon spectra from nucleon-nucleus interactions in the energy range 340 to 2900 MeV and comparisons with experiment. Phys. Rev. 188, 1711 (1969).
  42. R. E. Prael, H. Lichtenstein, "User guide to LCS: the LAHET code system" (Tech. Rep. LA- UR-89-3014, Los Alamos National Laboratory, 1989).
  43. R. L. Burman, M. E. Potter, E. S. Smith, Monte Carlo simulation of neutrino production by medium-energy protons in a beam stop. Nucl. Instr. Meth. A 291, 621 (1990).
  44. R. L. Burman, A. C. Dodd, P. Plischke, Neutrino flux calculations for the ISIS spallation neutron facility. Nucl. Instr. Meth. A 368, 416 (1996).
  45. R. L. Burman, A. C. Dodd, P. Plischke, Forschungszentrum Karlsruhe Report, FZKA 5595, July 1995.
  46. R.L. Burman, P. Plischke, Neutrino fluxes from a high-intensity spallation neutron facility. Nucl. Instr. Meth. A 398, 147 (1997).
  47. D. R. F. Cochran et al., Production of charged pions by 730-MeV protons from hydrogen and selected nuclei. Phys. Rev. D 6, 3085 (1972).
  48. J.F. Crawford et al., Measurement of cross sections and asymmetry parameters for the production of charged pions from various nuclei by 585-MeV protons. Phys. Rev. C 22, 1184 (1980).
  49. J. W. Norbury, L. W. Townsend, Parametrized total cross sections for pion production in nuclear collisions. Nucl. Instr. Meth. B 254, 187 (2007).
  50. E. Ronchi, P.-A. Soderstrom, J. Nyberg, E. Andersson Suden, S. Conroy, G. Ericsson, C. Hellesen, M. Gatu Johnson, M. Weiszflog, An artificial neural network based neutron- gamma discrimination and pile-up rejection framework for the BC-501 liquid scintillation detector. Nucl. Instr. Meth. A 610, 534 (2009).
  51. X. L. Luo et al., Test of digital neutron-gamma discrimination with four different photomultiplier tubes for the Neutron Detector Array (NEDA). Nucl. Instr. Meth. A 767, 83 (2014).
  52. N. Mascarenas, J. Brennan, K. Krenz, P. Marleau, S. Mrowka, Results with the neutron scatter camera. IEEE Trans. Nucl. Sci. 56, 1269 (2009).
  53. S. A. Pozzi et al., MCNPX-PoliMi for nuclear nonproliferation applications. Nucl. Instr. Meth. A 694, 119 (2012).
  54. V. V. Verbinski, W. R. Burrus, T. A. Love, W. Zobel, N. W. Hill, Calibration of an organic scintillator for neutron spectrometry. Nucl. Instr. Meth. 65, 8 (1968).
  55. D. J. Ficenec, S. P. Ahlen, A. A. Marin, J. A. Musser, G. Tarle, Observation of electronic excitation by extremely slow protons with applications to the detection of supermassive charged particles. Phys. Rev. D 36, 311 (1987).
  56. R. Lazauskas, C. Volpe, Low-energy neutrino scattering measurements at future spallation source facilities. J. Phys. G: Nucl. Part. Phys. 37, 125101 (2010).
  57. R. Lazauskas, C. Volpe, Corrigendum: Low-energy neutrino scattering measurements at future spallation source facilities. J. Phys. G: Nucl. Part. Phys. 42, 059501 (2015).
  58. E. Kolbe, K. Langanke, Role of n-induced reactions on lead and iron in neutrino detectors. Phys. Rev. C63, 025802 (2001).
  59. A. R. Samana, C. A. Bertulani, Detection of supernova neutrinos with neutrino-iron scattering. Phys. Rev. C 78, 024312 (2008).
  60. M. S. Athar, S. Ahmad, S. K. Singh, Neutrino nucleus cross sections for low energy neutrinos at SNS facilities. Nucl. Phys. A 764, 551 (2006).
  61. N. Jovancevic, M. Krmar, D. Mrda, J. Slivka, I. Bikit, Neutron induced background gamma activity in low-level Ge-spectroscopy systems. Nucl. Instr. Meth. A 612, 303 (2010).
  62. A. G. Wright, An investigation of photomultiplier background. J. Phys. E: Sci. Instrum. 16, 300 (1983).
  63. C. Bhatia et al., Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons. Nucl. Instr. Meth. A757, 7 (2014).
  64. P. R. Beck, S. A. Payne, S. Hunter, L. Ahle, N. J. Cherepy, E. L. Swanberg, Nonproportionality of scintillator detectors. V. Comparing the gamma and electron response. IEEE Trans. Nucl. Sci. 62, 1429 (2015).
  65. W. Mengesha, T. D. Taulbee, B. D. Rooney, J. D. Valentine, Light yield non-proportionality of CsI[Tl], CsI[Na], and YAP. IEEE Trans. Nucl. Sci. 45, 456 (1998).
  66. H. Park et al., Neutron beam test of CsI crystal for dark matter search. Nucl. Instr. Meth. A 491, 460 (2002).
  67. C. Guo et al., Neutron beam tests of CsI[Na] and CaF 2 [Eu] crystals for dark matter direct search. Nucl. Instr. Meth. A 818, 38 (2016).
  68. V. I. Tretyak, Semi-empirical calculation of quenching factors for ions in scintillators. Astropart. Phys. 33, 40 (2010).
  69. J. Barranco, O. G. Miranda, T. I. Rashba, Probing new physics with coherent neutrino scattering off nuclei. JHEP 12, 021 (2005).
  70. J. F. Beacom, W. M. Farr and P. Vogel, Detection of supernova neutrinos by neutrino-proton elastic scattering. Phys. Rev. D 66, 033001 (2002).
  71. L. M. Sehgal, Differences in the coherent interactions of n e , n µ , and n t . Phys Lett. B 162, 370 (1985).
  72. S. R. Klein, J. Nystrand, Exclusive vector meson production in relativistic heavy ion collisions. Phys. Rev. C 60, 014903 (1999).
  73. J. D. Lewin, P. F. Smith, Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astropart. Phys. 6, 87 (1996).
  74. O. Behnke, K. Kroninger, G. Schott, T. Schrorner-Sadenius, Ed., Data analysis in high energy physics (Wiley-VCH, Weinheim, Germany, 2013).
  75. I. M. Chakravarti, R. G. Laha, J. Roy, Handbook of Methods of Applied Statistics (Wiley, NY, 1967).
  76. I. Stancu, Low energy neutrino cross-section measurements at the SNS. Nucl. Phys. B (Proc. Suppl.) 155, 251 (2006).
  77. Spallation neutron source final safety assessment document for neutron facilities. Oak Ridge National Laboratory Report 102030102-ES0016-R03, September 2011.
  78. P. Coloma, T. Schwetz, Generalized mass ordering degeneracy in neutrino oscillation experiments. Phys. Rev. D94, 055005 (2016).
  79. P. Coloma, P. B. Denton, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, Curtailing the dark-side in non-standard neutrino interactions. JHEP 12, 021 (2005).
  80. S. Davidson, C. Pena-Garay, N. Rius, A. Santamaria, Present and future bounds on non- standard neutrino interactions. JHEP 03, 011 (2003).
  81. G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, Getting the most from the statistical analysis of solar neutrino oscillations. Phys. Rev. D 66, 053010 (2002).
  82. J. Dorenbosh et al. (CHARM collaboration), Experimental verification of the universality of electron-neutrino and muon-neutrino coupling to the neutral weak current. Phys. Lett. B 180, 303 (1986).
  83. D. Akimov et al. (COHERENT collaboration), The COHERENT experiment at the spallation neutrino source. https://arxiv.org/abs/1509.08702 (2015).