Observation of coherent elastic neutrino-nucleus scattering
2017, Science
https://doi.org/10.1126/SCIENCE.AAO0990Abstract
A 14.6-kilogram sodium-doped CsI scintillator is used to detect a neutrino scattering process with a 6.7σ confidence level.
References (83)
- F. J. Hasert et al., Observation of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment. Phys. Lett. B 46, 138 (1973).
- D. Z. Freedman, Coherent effects of a weak neutral current. Phys. Rev. D 9, 1389 (1974).
- A. Drukier, L. Stodolsky, Principles and applications of a neutral-current detector for neutrino physics and astronomy. Phys. Rev. D 30, 2295 (1984).
- A. J. Anderson, J. M. Conrad, E. Figueroa-Feliciano, C. Ignarra, G. Karagiorgi, K. Scholberg, M. H. Shaevitz, J. Spitz, Measuring active-to-sterile neutrino oscillations with neutral current coherent neutrino-nucleus scattering. Phys. Rev. D 86, 013004 (2012).
- B. Dutta, Y. Gao, A. Kubik, R. Mahapatra, N. Mirabolfathi, L. E. Strigari, J. W. Walker, Sensitivity to oscillation with a sterile fourth generation neutrino from ultralow threshold neutrino-nucleus coherent scattering. Phys. Rev. D 94, 093002 (2016).
- T. S. Kosmas, D. K. Papoulias, M. Tórtola, J. W. F. Valle, Probing light sterile neutrino signatures at reactor and spallation neutron source neutrino experiments. https://arxiv.org/abs/1703.00054 (2017).
- A. C. Dodd, E. Papageorgiu, S. Ranfone, The effect of a neutrino magnetic moment on nuclear excitation processes. Phys. Lett. B 266, 434 (1991).
- T. S. Kosmas, O. G. Miranda, D. K. Papoulias, M. Tórtola, J. W. F. Valle, Probing neutrino magnetic moments at the spallation neutron source facility. Phys. Rev. D 92, 013011 (2015).
- J. Barranco, O. G. Miranda, T. I. Rashba, Sensitivity of low energy neutrino experiments to physics beyond the Standard Model. Phys. Rev. D 76, 073008 (2007).
- P. deNiverville, M. Pospelov, A. Ritz, Light new physics in coherent neutrino-nucleus scattering experiments. Phys. Rev. D 92, 095005 (2015).
- B. Dutta, R. Mahapatra. L. E. Strigari, J. W. Walker, Sensitivity to Z-prime and nonstandard neutrino interactions from ultralow threshold neutrino-nucleus coherent scattering. Phys. Rev. D 93, 013015 (2016).
- K. Patton, J. Engel, G. C. McLaughlin, N. Schunck, Neutrino-nucleus coherent scattering as a probe of neutron density distributions. Phys. Rev. C 86, 024612 (2012).
- L. M. Krauss, Low-energy neutrino detection and precision tests of the Standard Model. Phys. Lett. B 269, 407 (1991).
- L. Stodolsky, Some neutrino events of the 21 st century. Paper presented at Neutrino Astrophysics, Ringberg Castle, Tegernsee, Germany, 20-24 October 1997. https://arxiv.org/abs/astro-ph/9801320v1 (1998).
- Y. Kim, Detection of antineutrinos for reactor monitoring. Nucl. Eng. Tech. 48, 285 (2016).
- J. R. Wilson, Coherent neutrino scattering and stellar collapse. Phys. Rev. Lett. 32, 849 (1974).
- D. N. Schramm, W. D. Arnett, Neutral currents and supernovas. Phys. Rev. Lett. 34, 113 (1975).
- D. Z. Freedman, D. N. Schramm, D. L. Tubbs, The weak neutral current and its effects in stellar collapse. Ann. Rev. Nucl. Sci. 27, 167 (1977).
- J. Billard, E. Figueroa-Feliciano, L. Strigari, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments. Phys. Rev. D 89, 023524 (2014).
- B. Cabrera, L. M. Krauss, F. Wilczek, Bolometric detection of neutrinos. Phys. Rev. Lett. 55, 25 (1985).
- C. Braggio, G. Bressi, G. Carugno, E. Feltrin, G. Galeazzi, Massive silicon or germanium detectors at cryogenic temperature. Nucl. Instr. Meth. A 568, 412 (2006).
- J. A. Formaggio, E. Figueroa-Feliciano, A. J. Anderson, Sterile neutrinos, coherent scattering, and oscillometry measurements with low-temperature bolometers. Phys. Rev. D 85, 013009 (2012).
- S. A. Golubkov et al., Investigation of the internal amplification effect on planar (p + -n-n + ) structures made of high-resistivity silicon. Instr. Exp. Tech. 47, 799 (2004).
- P. S. Barbeau, J. I. Collar, O. Tench, Large-mass ultralow noise germanium detectors: performance and applications in neutrino and astroparticle physics. JCAP 09, 009 (2007).
- A. Aguilar-Arevalo et al., The CONNIE experiment. J. Phys: Conf. Ser. 761, 012057 (2016).
- C. J. Horowitz, K. J. Coakley, D. N. McKinsey, Supernova observation via neutrino-nucleus elastic scattering in the CLEAN detector. Phys. Rev. D68, 023005 (2003).
- A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, R. Snopkov, Y. Tikhonov, V. A. Kudryavtsev, P. K. Lightfoot, N. J. C. Spooner, A two-phase argon avalanche detector operated in a single electron counting mode. Nucl. Instr. Meth. A 574, 493 (2007).
- D. Yu. Akimov et al., Prospects for observation of neutrino-nuclear neutral current coherent scattering with two-phase xenon emission detector. J. Inst. 8, P10023 (2013).
- T. H. Joshi, S. Sangiorgio, A. Bernstein, M. Foxe, C. Hagmann, I. Jovanovic, K. Kazkaz, V. Mozin, E. B. Norman, S. V. Pereverzev, F. Rebassoo, P. Sorensen, First measurement of the ionization yield of nuclear recoils in liquid argon. Phys. Rev. Lett. 112, 171303 (2014).
- S. J. Brice et al., A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target. Phys. Rev. D 89, 072004 (2014).
- J. I. Collar, N. E. Fields, M. Hai, T. W. Hossbach, J. L. Orrell, C. T. Overman, G. Perumpilly, B. Scholz, Coherent neutrino-nucleus scattering detection with a CsI[Na] scintillator at the SNS spallation source. Nucl. Instr. Meth. A 773, 56 (2015).
- F. T. Avignone III, Y. V. Efremenko, Neutrino-nucleus cross-section measurements at intense, pulsed spallation sources. J. Phys. G: Nucl. Part. Phys. 29, 2615 (2003).
- K. Scholberg, Prospects for measuring coherent neutrino-nucleus elastic scattering at a stopped-pion neutrino source. Phys. Rev. D73, 033005 (2006).
- Materials and methods are available as supplementary materials at the Science website.
- C. L. Cowan Jr., F. Reines, F. B. Harrison, H. W. Kruse , A. D. McGuire, Detection of the free neutrino: a confirmation. Science 124, 103 (1956).
- References (36)-(84)
- N. E. Fields, "C o sI: Development of a low threshold detector for the observation of coherent elastic neutrino-nucleus scattering", Ph.D. thesis, University of Chicago (2014).
- Proteus, Chagrin Falls, Ohio. Crystal grown by Amcrys, Kharkov, Ukraine.
- K. Nakamura, Y. Hamana, Y. Ishigami, T. Matsui, Latest bialkali photocathode with ultra high sensitivity. Nucl. Instr. Meth. A623, 276 (2010).
- J. Amare et al., Cosmogenic radionuclide production in NaI[Tl] crystals. JCAP 02, 046 (2015).
- H. W. Bertini, Intra-nuclear cascade calculation of the secondary nucleon spectra from nucleon-nucleus interactions in the energy range 340 to 2900 MeV and comparisons with experiment. Phys. Rev. 188, 1711 (1969).
- R. E. Prael, H. Lichtenstein, "User guide to LCS: the LAHET code system" (Tech. Rep. LA- UR-89-3014, Los Alamos National Laboratory, 1989).
- R. L. Burman, M. E. Potter, E. S. Smith, Monte Carlo simulation of neutrino production by medium-energy protons in a beam stop. Nucl. Instr. Meth. A 291, 621 (1990).
- R. L. Burman, A. C. Dodd, P. Plischke, Neutrino flux calculations for the ISIS spallation neutron facility. Nucl. Instr. Meth. A 368, 416 (1996).
- R. L. Burman, A. C. Dodd, P. Plischke, Forschungszentrum Karlsruhe Report, FZKA 5595, July 1995.
- R.L. Burman, P. Plischke, Neutrino fluxes from a high-intensity spallation neutron facility. Nucl. Instr. Meth. A 398, 147 (1997).
- D. R. F. Cochran et al., Production of charged pions by 730-MeV protons from hydrogen and selected nuclei. Phys. Rev. D 6, 3085 (1972).
- J.F. Crawford et al., Measurement of cross sections and asymmetry parameters for the production of charged pions from various nuclei by 585-MeV protons. Phys. Rev. C 22, 1184 (1980).
- J. W. Norbury, L. W. Townsend, Parametrized total cross sections for pion production in nuclear collisions. Nucl. Instr. Meth. B 254, 187 (2007).
- E. Ronchi, P.-A. Soderstrom, J. Nyberg, E. Andersson Suden, S. Conroy, G. Ericsson, C. Hellesen, M. Gatu Johnson, M. Weiszflog, An artificial neural network based neutron- gamma discrimination and pile-up rejection framework for the BC-501 liquid scintillation detector. Nucl. Instr. Meth. A 610, 534 (2009).
- X. L. Luo et al., Test of digital neutron-gamma discrimination with four different photomultiplier tubes for the Neutron Detector Array (NEDA). Nucl. Instr. Meth. A 767, 83 (2014).
- N. Mascarenas, J. Brennan, K. Krenz, P. Marleau, S. Mrowka, Results with the neutron scatter camera. IEEE Trans. Nucl. Sci. 56, 1269 (2009).
- S. A. Pozzi et al., MCNPX-PoliMi for nuclear nonproliferation applications. Nucl. Instr. Meth. A 694, 119 (2012).
- V. V. Verbinski, W. R. Burrus, T. A. Love, W. Zobel, N. W. Hill, Calibration of an organic scintillator for neutron spectrometry. Nucl. Instr. Meth. 65, 8 (1968).
- D. J. Ficenec, S. P. Ahlen, A. A. Marin, J. A. Musser, G. Tarle, Observation of electronic excitation by extremely slow protons with applications to the detection of supermassive charged particles. Phys. Rev. D 36, 311 (1987).
- R. Lazauskas, C. Volpe, Low-energy neutrino scattering measurements at future spallation source facilities. J. Phys. G: Nucl. Part. Phys. 37, 125101 (2010).
- R. Lazauskas, C. Volpe, Corrigendum: Low-energy neutrino scattering measurements at future spallation source facilities. J. Phys. G: Nucl. Part. Phys. 42, 059501 (2015).
- E. Kolbe, K. Langanke, Role of n-induced reactions on lead and iron in neutrino detectors. Phys. Rev. C63, 025802 (2001).
- A. R. Samana, C. A. Bertulani, Detection of supernova neutrinos with neutrino-iron scattering. Phys. Rev. C 78, 024312 (2008).
- M. S. Athar, S. Ahmad, S. K. Singh, Neutrino nucleus cross sections for low energy neutrinos at SNS facilities. Nucl. Phys. A 764, 551 (2006).
- N. Jovancevic, M. Krmar, D. Mrda, J. Slivka, I. Bikit, Neutron induced background gamma activity in low-level Ge-spectroscopy systems. Nucl. Instr. Meth. A 612, 303 (2010).
- A. G. Wright, An investigation of photomultiplier background. J. Phys. E: Sci. Instrum. 16, 300 (1983).
- C. Bhatia et al., Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons. Nucl. Instr. Meth. A757, 7 (2014).
- P. R. Beck, S. A. Payne, S. Hunter, L. Ahle, N. J. Cherepy, E. L. Swanberg, Nonproportionality of scintillator detectors. V. Comparing the gamma and electron response. IEEE Trans. Nucl. Sci. 62, 1429 (2015).
- W. Mengesha, T. D. Taulbee, B. D. Rooney, J. D. Valentine, Light yield non-proportionality of CsI[Tl], CsI[Na], and YAP. IEEE Trans. Nucl. Sci. 45, 456 (1998).
- H. Park et al., Neutron beam test of CsI crystal for dark matter search. Nucl. Instr. Meth. A 491, 460 (2002).
- C. Guo et al., Neutron beam tests of CsI[Na] and CaF 2 [Eu] crystals for dark matter direct search. Nucl. Instr. Meth. A 818, 38 (2016).
- V. I. Tretyak, Semi-empirical calculation of quenching factors for ions in scintillators. Astropart. Phys. 33, 40 (2010).
- J. Barranco, O. G. Miranda, T. I. Rashba, Probing new physics with coherent neutrino scattering off nuclei. JHEP 12, 021 (2005).
- J. F. Beacom, W. M. Farr and P. Vogel, Detection of supernova neutrinos by neutrino-proton elastic scattering. Phys. Rev. D 66, 033001 (2002).
- L. M. Sehgal, Differences in the coherent interactions of n e , n µ , and n t . Phys Lett. B 162, 370 (1985).
- S. R. Klein, J. Nystrand, Exclusive vector meson production in relativistic heavy ion collisions. Phys. Rev. C 60, 014903 (1999).
- J. D. Lewin, P. F. Smith, Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astropart. Phys. 6, 87 (1996).
- O. Behnke, K. Kroninger, G. Schott, T. Schrorner-Sadenius, Ed., Data analysis in high energy physics (Wiley-VCH, Weinheim, Germany, 2013).
- I. M. Chakravarti, R. G. Laha, J. Roy, Handbook of Methods of Applied Statistics (Wiley, NY, 1967).
- I. Stancu, Low energy neutrino cross-section measurements at the SNS. Nucl. Phys. B (Proc. Suppl.) 155, 251 (2006).
- Spallation neutron source final safety assessment document for neutron facilities. Oak Ridge National Laboratory Report 102030102-ES0016-R03, September 2011.
- P. Coloma, T. Schwetz, Generalized mass ordering degeneracy in neutrino oscillation experiments. Phys. Rev. D94, 055005 (2016).
- P. Coloma, P. B. Denton, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, Curtailing the dark-side in non-standard neutrino interactions. JHEP 12, 021 (2005).
- S. Davidson, C. Pena-Garay, N. Rius, A. Santamaria, Present and future bounds on non- standard neutrino interactions. JHEP 03, 011 (2003).
- G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, Getting the most from the statistical analysis of solar neutrino oscillations. Phys. Rev. D 66, 053010 (2002).
- J. Dorenbosh et al. (CHARM collaboration), Experimental verification of the universality of electron-neutrino and muon-neutrino coupling to the neutral weak current. Phys. Lett. B 180, 303 (1986).
- D. Akimov et al. (COHERENT collaboration), The COHERENT experiment at the spallation neutrino source. https://arxiv.org/abs/1509.08702 (2015).