We study future coherent elastic neutrino-nucleus scattering (CEνNS) modifications from a variety... more We study future coherent elastic neutrino-nucleus scattering (CEνNS) modifications from a variety of possible models at the Coherent CAPTAIN Mills (CCM) experiment at Los Alamos. We show that large regions of Non-Standard Neutrino Interaction (NSI) parameter space will be excluded rapidly, and that stringent new bounds on the gauge coupling in Z ′ models will also be placed. As a result, CCM will be able to rule out LMA-D solutions for a large class of models with MeV-scale mediators. ∗Electronic address: shoemaker@vt.edu 1 ar X iv :2 10 3. 08 40 1v 1 [ he pph ] 1 5 M ar 2 02 1
We study a dark matter (DM) model in which the dominant coupling to the standard model occurs thr... more We study a dark matter (DM) model in which the dominant coupling to the standard model occurs through a neutrino-DM-scalar coupling. The new singlet scalar will generically have couplings to nuclei/electrons arising from renormalizable Higgs portal interactions. As a result, the DM particle X can convert into a neutrino via scattering on a target nucleus N : X þ N → ν þ N , leading to striking signatures at direct detection experiments. Similarly, DM can be produced in neutrino scattering events at neutrino experiments: ν þ N → X þ N , predicting spectral distortions at experiments such as COHERENT. Furthermore, the model allows for late kinetic decoupling of dark matter with implications for small-scale structure. At low masses, we find that COHERENT and late kinetic decoupling produce the strongest constraints on the model, while at high masses the leading constraints come from DM down-scattering at XENON1T and Borexino. Future improvement will come from CEνNS data, ultralow threshold direct detection, and rare kaon decays.
Uploads
Papers by eli welch