Academia.eduAcademia.edu

Outline

Recent highlights from GENIE v3

The European Physical Journal Special Topics

https://doi.org/10.1140/EPJS/S11734-021-00295-7

Abstract

The release of GENIE v3.0.0 was a major milestone in the long history of the GENIE project, delivering several alternative comprehensive neutrino interaction models, improved charged-lepton scattering simulations, a range of beyond the Standard Model simulation capabilities, improved experimental interfaces, expanded core framework capabilities, and advanced new frameworks for the global analysis of neutrino scattering data and tuning of neutrino interaction models. Steady progress continued following the release of GENIE v3.0.0. New tools and a large number of new physics models, comprehensive model configurations, and tunes have been made publicly available and planned for release in v3.2.0. This article highlights some of the most recent technical and physics developments in the GENIE v3 series.

References (121)

  1. C. Andreopoulos et al., The GENIE Neutrino Monte Carlo Generator. Nucl. Instrum. Methods A 614(1), 87-104 (2010). https://doi.org/10.1016/j.nima.2009. 12.009. arXiv:0905.2517 [hep-ph]
  2. J. Tena-Vidal et al. Neutrino-nucleon cross-section model tuning in GENIE v3. arXiv:2104.09179 [hep-ph]
  3. D. Mancusi et al., Improving the description of proton-induced one-nucleon removal in intranuclear- cascade models. Phys. Rev. C 91(3), 034602 (2015). https://doi.org/10.1103/PhysRevC.91.034602. arXiv:1411.4562 [nucl-th]
  4. D.H. Wright, M.H. Kelsey, The Geant4 Bertini Cas- cade. Nucl. Instrum. Methods A 804, 175-188 (2015). https://doi.org/10.1016/j.nima.2015.09.058
  5. A. Buckley et al., Systematic event generator tuning for the LHC. Eur. Phys. J. C 65(1- 2), 331-357 (2010). https://doi.org/10.1140/epjc/ s10052-009-1196-7. arXiv:0907.2973 [hep-ph]
  6. SVN webiste. https://subversion.apache.org/
  7. Git webiste. https://git-scm.com/
  8. P.A. Zyla et al., Review of particle physics. PTEP 2020(8), 083C01 (2020). https://doi.org/10.1093/ ptep/ptaa104
  9. H. Schulz et al. Professor webiste. https://professor. hepforge.org
  10. B. Chris. The GENIE event library generator interface. Talk delivered at the NuSTEC Work- shop: New Directions in Neutrino-Nucleus Scattering, 15 March 2021. https://indico.phys.vt.edu/event/44/ contributions/901/
  11. C. Andreopoulos et al. The GENIE Neutrino Monte Carlo Generator: Physics and User Manual. arXiv:1510.05494 [hep-ph]
  12. P.A.N. Machado, O. Palamara, D.W. Schmitz, The short-baseline neutrino program at Fermilab. Ann. Rev. Nucl. Part. Sci. 69, 363-387 (2019). https://doi.org/10.1146/annurev-nucl-101917-020949. arXiv:1903.04608 [hep-ex]
  13. K. Abe et al. Hyper-Kamiokande Design Report. arXiv:1805.04163 [physics.ins-det]
  14. B. Abi et al., Deep Underground Neutrino Experi- ment (DUNE), Far Detector Technical Design Report, Volume I. Introduction to DUNE. JINST 15(08), T08008 (2020). https://doi.org/10.1088/1748-0221/ 15/08/T08008. arXiv:2002.02967 [physics.ins-det]
  15. A. Bodek, J.L. Ritchie, Fermi motion effects in deep inelastic lepton scattering from nuclear targets. Phys. Rev. D 23(5), 1070-1091 (1981). https://doi.org/10. 1103/PhysRevD.23.1070
  16. O. Hen et al., Nucleon-nucleon correlations, short- lived excitations, and the quarks within. Rev. Mod. Phys. 89(4), 045002 (2017). https://doi.org/10.1103/ RevModPhys.89.045002. arXiv:1611.09748 [nucl-ex]
  17. J. M. Nieves, J. E. Amaro, M. Valverde. "Inclu- sive quasi-elastic neutrino reactions". Phys. Rev. C 70(5) (2004). [Erratum: ibid. 72.1 (2005) p. 019902], p. 055503. https://doi.org/10.1103/PhysRevC. 70.055503, https://doi.org/10.1103/PhysRevC.72. 019902. arXiv:nucl-th/0408005
  18. K.S. Egiyan et al., Measurement of 2-and 3-nucleon short range correlation probabilities in nuclei. Phys. Rev. Lett. 96(8), 082501 (2006). https://doi.org/10. 1103/PhysRevLett.96.082501. arXiv:nucl-ex/0508026
  19. A. Papadopoulou et al., Inclusive electron scattering an the GENIE Neutrino Event Generator. Phys. Rev. D 103(11), 113003 (2021). arXiv:2009.07228 [nucl-th]
  20. R. Bradford et al., A new parameterization of the nucleon elastic form factors. Nucl. Phys. B (Proc. Suppl.) 159, 127-132 (2006). https://doi.org/10.1016/ j.nuclphysbps.2006.08.028. arXiv:hep-ex/0602017
  21. P.E. Bosted, M.E. Christy, Empirical fit to inelas- tic electron-deuteron and electron-neutron resonance region transverse cross-sections. Phys. Rev. C 77(6), 065206 (2008). https://doi.org/10.1103/PhysRevC.77. 065206. arXiv:0711.0159 [hep-ph]
  22. M.E. Christy, P.E. Bosted, Empirical fit to pre- cision inclusive electron-proton cross-sections in the resonance region. Phys. Rev. C 81(5), 055213 (2010). https://doi.org/10.1103/PhysRevC.81.055213. arXiv:0712.3731 [hep-ph]
  23. O. Lalakulich, U. Mosel, GiBUU and shallow inelastic scattering. AIP Conf. Proc. 1663(1), 040004 (2015). https://doi.org/10.1063/1.4919474. arXiv:1303.6677 [nucl-th]
  24. J. McElwee, "Is T2K missing energy? Searching the electron-scattering data archives for robust removal energy uncertainties". Proceedings of the 22nd International Workshop on Neutrinos from Accel- erators (NuFact 2021), Cagliari, Italy (and online), September 6-11, 2021. https://indico.cern.ch/event/ 855372/contributions/4436393/attachments/2305859/ 3922865/nufact-mcelwee.pdf
  25. J. Żmuda et al., NuWro Monte Carlo genera- tor of neutrino interactions -first electron scat- tering results. Acta Phys. Pol. B 46(11), 2329 (2015). https://doi.org/10.5506/APhysPolB.46.2329. arXiv:1510.03268 [hep-ph]
  26. T. Katori, Meson exchange current (MEC) mod- els in neutrino interaction generators. AIP Conf. Proc. 1663, 030001 (2015). https://doi.org/10.1063/ 1.4919465. arXiv:1304.6014 [nucl-th]
  27. M. Khachatryan, Validation of neutrino energy esti- mation using electron scattering data. PhD thesis. Old Dominion U., (2019). https://doi.org/10.2172/ 1768400. https://digitalcommons.odu.edu/physics_ etds/123
  28. A. Ashkenazy et al. Electrons For Neutrinos. Addressing Critical Neutrino-nucleus Issues A Run Group Proposal Resubmission to Jefferson Lab PAC 46. https://www.jlab.org/exp_prog/proposals/ 18/C12-17-006.pdf. C12-17-006
  29. D. Achim, Recent results from the Mainz Microtron MAMI and an outlook for the future. AIP Conf. Proc. 1735, 020006 (2016). https://doi.org/10.1063/ 1.4949374
  30. A.M. Ankowski et al., Lepton-nucleus cross section measurements for DUNE with the LDMX detector. Phys. Rev. D 101(5), 053004 (2020). https://doi. org/10.1103/PhysRevD.101.053004. arXiv:1912.06140 [hep-ph]
  31. C.H.L. Smith, Neutrino reactions at accelerator ener- gies. Phys. Rept. 3(5), 261-379 (1972). https://doi. org/10.1016/0370-1573(72)90010-5
  32. Eur. Phys. J. Spec. Top.
  33. J. Engel, Approximate treatment of lepton distortion in charged current neutrino scattering from nuclei. Phys. Rev. C 57(4), 2004-2009 (1998). https://doi.org/10. 1103/PhysRevC.57.2004. arXiv:nucl-th/9711045
  34. T. De Forest, Off-shell electron-nucleon cross sec- tions: The impulse approximation. Nucl. Phys. A 392(2), 232-248 (1983). https://doi.org/10.1016/ 0375-9474(83)90124-0
  35. A. Bodek, T. Cai, Removal energies and final state interaction in lepton nucleus scattering. Eur. Phys. J. C 79(4), 293 (2019). https://doi.org/10.1140/epjc/ s10052-019-6750-3. arXiv:1801.07975 [nucl-th]
  36. A.A. Aguilar-Arevalo et al., First measurement of the muon neutrino charged current quasielastic double dif- ferential cross section. Phys. Rev. D 81(9), 092005 (2010). https://doi.org/10.1103/PhysRevD.81.092005. arXiv:1002.2680 [hep-ex]
  37. P. Barreau et al., Deep inelastic electron scattering from Carbon. Nucl. Phys. A 402(3), 515-540 (1983). https://doi.org/10.1016/0375-9474(83)90217-8
  38. S. Dolan, G.D. Megias, S. Bolognesi, Implementa- tion of the SuSAv2-meson exchange current 1p1h and 2p2h models in GENIE and analysis of nuclear effects in T2K measurements. Phys. Rev. D 101(3), 033003 (2020). https://doi.org/10.1103/PhysRevD. 101.033003. arXiv:1905.08556 [hep-ex]
  39. R. González-Jiménez et al., Extensions of superscaling from relativistic mean field theory: the SuSAv2 model. Phys. Rev. C 90(3), 035501 (2014). https://doi.org/10. 1103/PhysRevC.90.035501. arXiv:1407.8346 [nucl-th]
  40. J.M. Nieves, I.R. Simo, M.J.V. Vacas, Inclusive charged-current neutrino-nucleus reactions. Phys. Rev. C 83(4), 045501 (2011). https://doi.org/10.1103/ PhysRevC.83.045501. arXiv:1102.2777 [hep-ph]
  41. R. Gran et al., Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV. Phys. Rev. D 88(11), 113007 (2013). https://doi.org/10.1103/PhysRevD.88. 113007. arXiv:1307.8105 [hep-ph]
  42. I.R. Simo et al., Emission of neutron-proton and proton-proton pairs in neutrino scattering. Phys. Lett. B 762, 124-130 (2016). https://doi.org/10.1016/j. physletb.2016.09.021. arXiv:1607.08451 [nucl-th]
  43. I.R. Simo et al., Relativistic model of 2p-2h meson exchange currents in (anti)neutrino scattering. J. Phys. G 44(6), 065105 (2017). https://doi.org/10. 1088/1361-6471/aa6a06. arXiv:1604.08423 [nucl-th]
  44. J. Schwehr, D. Cherdack, R. Gran. GENIE imple- mentation of IFIC Valencia model for QE-like 2p2h neutrino-nucleus cross section. arXiv:1601.02038 [hep- ph]
  45. R. Acciarri et al., Detection of back-to-back proton pairs in charged-current neutrino interactions with the ArgoNeuT detector in the NuMI low energy beam line. Phys. Rev. D 90(1), 012008 (2014). https://doi.org/10. 1103/PhysRevD.90.012008. arXiv:1405.4261 [hep-ex]
  46. F. Ravndal, Weak production of nuclear resonances in a relativistic quark model. Nuovo Cim. 18 A(3), 385- 415 (1973). https://doi.org/10.1007/BF02722789
  47. D. Rein, L.M. Sehgal, Neutrino-excitation of baryon resonances and single pion production. Ann. Phys. 133(10), 79-153 (1981). https://doi.org/10.1016/ 0003-4916(81)90242-6
  48. E.A. Paschos, J.-Y. Yu, Neutrino interactions in oscillation experiments. Phys. Rev. D 65(3), 033002 (2002). https://doi.org/10.1103/PhysRevD.65.033002. arXiv:hep-ph/0107261
  49. A. Bodek, I. Park, U. Yang, Improved low Q 2 model for neutrino and electron nucleon cross sec- tions in few GeV region. Nucl. Phys. B (Proc. Suppl.) 139, 113-118 (2005). https://doi.org/10.1016/ j.nuclphysbps.2004.11.208. arXiv:hep-ph/0411202
  50. A. Bodek, U. Yang, NUFACT09 update to the Bodek- Yang unified model for electron-and neutrino-nucleon scattering cross sections. AIP Conf. Proc. 1222, 233- 237 (2010). https://doi.org/10.1063/1.3399303
  51. K.S. Kuzmin, V.V. Lyubushkin, V.A. Naumov, Lepton polarization in neutrino nucleon interac- tions. Mod. Phys. Lett. A 19(38), 2815-2829 (2004). https://doi.org/10.1142/S0217732304016172. arXiv:hep-ph/0312107
  52. K.S. Kuzmin, V.V. Lyubushkin, V.A. Naumov, Extended Rein-Sehgal model for tau lepton pro- duction. Nucl. Phys. B (Proc. Suppl.) 139, 158-161 (2005). https://doi.org/10.1016/j.nuclphysbps.2004. 11.213. arXiv:hep-ph/0408106
  53. Ch. Berger, L. M. Sehgal, Lepton mass effects in single pion production by neutrinos. Phys. Rev. D 76(11) (2007). [Erratum: ibid. 77.5 (2008) p. 059901], p. 113004. https://doi.org/10.1103/PhysRevD.
  54. 113004. https://doi.org/10.1103/PhysRevD.77. 059901. arXiv:0709.4378 [hep-ph]
  55. K. M. Graczyk, J. T. Sobczyk, Form factors in the quark resonance model. Phys. Rev. D 77(5) (2008). [Erratum: ibid. 79.7 (2008) p. 079903], p. 053001. https://doi.org/10.1103/PhysRevD. 77.053001, https://doi.org/10.1103/PhysRevD.79. 079903. arXiv:0707.3561 [hep-ph]
  56. J.A. Nowak, Four momentum transfer discrepancy in the charged current π + production in the Mini- BooNE: Data vs. theory. AIP Conf. Proc. 1189, 243-248 (2009). https://doi.org/10.1063/1.3274164. arXiv:0909.3659 [hep-ph]
  57. K.S. Kuzmin, V.V. Lyubushkin, V.A. Naumov, Axial masses in quasielastic neutrino scattering and single- pion neutrinoproduction on nucleons and nuclei. Acta Phys. Polon. B 37(8), 2337-2348 (2006). arXiv:hep-ph/0606184
  58. M. S. Alam et al. GENIE Production Release 2.10.0. arXiv:1512.06882 [hep-ph]
  59. M. Kabirnezhad, Single pion production in neutrino- nucleon interactions. Phys. Rev. D 97(1), 013002 (2018). https://doi.org/10.1103/PhysRevD.97.013002. arXiv:1711.02403 [hep-ph]
  60. M. Kabirnezhad, Improvement of single pion produc- tion for T2K experiment simulation tools (update). PhD thesis. National Center for Nuclear Research, Otwock, Świerk, Poland (2020)
  61. M. Kabirnezhad, Single pion production in neutrino- nucleon interaction. JPS Conf. Proc. 12, 010043 (2016). https://doi.org/10.7566/JPSCP.12.010043
  62. M. Kabirnezhad, Single pion production in neutrino reactions. J. Phys: Conf. Ser. 888(1), 012122 (2017). https://doi.org/10.1088/1742-6596/888/1/012122
  63. D. Rein, Angular distribution in neutrino induced sin- gle pion production processes. Z. Phys. C 35(1), 43-64 (1987). https://doi.org/10.1007/BF01561054
  64. J. Campbell et al., Study of the reaction νp → μ -pπ + . Phys. Rev. Lett. 30(8), 335-339 (1973). https://doi. org/10.1103/PhysRevLett.30.335
  65. S.J. Barish et al., Study of neutrino interactions in hydrogen and deuterium. II. Inelastic charged-current reactions. Phys. Rev. D 19(9), 2521-2542 (1979). https://doi.org/10.1103/PhysRevD.19.2521
  66. G. M. Radecky et al., Study of single-pion production by weak charged currents in low-energy νd interac- tions. Phys. Rev. D /bf 25(5) (1982). [Erratum: ibid. 26.11 (1982) p. 3297], pp. 1161-1173. https://doi.org/ 10.1103/PhysRevD.25.1161. https://doi.org/10.1103/ PhysRevD.26.3297
  67. T. Kitagaki et al., Charged current exclusive pion pro- duction in neutrino deuterium interactions. Phys. Rev. D 34(9), 2554-2565 (1986). https://doi.org/10.1103/ PhysRevD.34.2554
  68. J. Bell et al., Study of the reaction νp → μ -Δ ++ at high energies and comparisons with theory. Phys. Rev. Lett. 41(15), 1012-1015 (1978). https://doi.org/ 10.1103/PhysRevLett.41.1012
  69. J. Bell et al., Cross-section measurements for the reac- tions νp → μ -pπ + and νp → μ -pK + at high energies. Phys. Rev. Lett. 41(15), 1008-1011 (1978). https:// doi.org/10.1103/PhysRevLett.41.1008
  70. D. Allasia et al., Single pion production in charged cur- rent νD interactions at high energies. Z. Phys. C 20(2), 95-100 (1983). https://doi.org/10.1007/BF01573212
  71. S. J. M. Barlag, Quasielastic interactions and one pion production by neutrinos and antineutrinos on a deu- terium target. PhD thesis, Amsterdam (1984)
  72. P.M. Allen et al., A study of single-meson production in neutrino and antineutrino charged-current interactions on protons. Nucl. Phys. B 264(2-3), 221-242 (1986). https://doi.org/10.1016/0550-3213(86)90480-3
  73. D. Allasia et al., Investigation of exclusive channels in ν/ν-deuteron charged current interactions. Nucl. Phys. B 343(2), 285-309 (1990). https://doi.org/10. 1016/0550-3213(90)90472-P
  74. P. Rodrigues, C. Wilkinson, K. McFarland, Constrain- ing the GENIE model of neutrino-induced single pion production using reanalyzed bubble chamber data. Eur. Phys. J. C 76(8), 474 (2016). https://doi.org/10. 1140/epjc/s10052-016-4314-3. arXiv:1601.01888 [hep- ex]
  75. E. A. Hawker, Single pion production in low energy neutrino-carbon. Proceedings of the 2nd International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region (NuInt 2002), Irvine, California, USA, December 12-15, 2002. (2003)
  76. E. Wang et al., Photon emission in neutral cur- rent interactions at the T2K experiment. Phys. Rev. D 92(5), 053005 (2015). https://doi.org/10.1103/ PhysRevD.92.053005. arXiv:1507.02446 [hep-ph]
  77. K. Abe et al., Measurement of neutrino and antineu- trino oscillations by the T2K experiment including a new additional sample of νe interactions at the far detector. Phys. Rev. D 96(9) (2017). [Erratum: ibid. 98.1 (2018) p. 019902], p. 092006. https://doi. org/10.1103/PhysRevD.96.092006. https://doi.org/10. 1103/PhysRevD.98.019902. arXiv:1707.01048 [hep-ex]
  78. P. AN Machado, O. Palamara, D.W. Schmitz, The short-baseline neutrino program at Fermilab. Ann. Rev. Nucl. Part. Sci. 69, 363-387 (2019). https://doi.org/10.1146/annurev-nucl-101917-020949. arXiv:1903.04608 [hep-ex]
  79. E. Wang, L. Alvarez-Ruso, J.M. Nieves, Photon emission in neutral current interactions at inter- mediate energies. Phys. Rev. C 89(1), 015503 (2014). https://doi.org/10.1103/PhysRevC.89.015503. arXiv:1311.2151 [nucl-th]
  80. E. Saúl Sala, Open problems in the Physics of Neu- trino Interactions with Nucleons and Nuclei. PhD the- sis.
  81. Universidad de Valencia (2021). https://ific.uv.es/ nucth/Thesis_Saul_Sala.pdf
  82. H. De Vries, C.W. De Jager, C.P. De Vries, Nuclear charge and magnetization density distribution param- eters from elastic electron scattering. Atom. Data Nucl. Data Tabl. 36(3), 495-536 (1987). https://doi.org/10. 1016/0092-640X(87)90013-1
  83. J. Cugnon et al., Processes involving few degrees of freedom in the frame of intranuclear cascade approaches. Eur. Phys. J. Plus 131(5), 169 (2016). https://doi.org/10.1140/epjp/i2016-16169-4
  84. S. Dytman et al., Comparison of validation methods of simulations for final state interactions in hadron pro- duction experiments. arXiv:2103.07535 [hep-ph]
  85. L.L. Salcedo et al., Computer simulation of inclusive pion nuclear reactions. Nucl. Phys. A 484(3-4), 557-592 (1988). https://doi.org/10.1016/ 0375-9474(88)90310-7
  86. V.R. Pandharipande, S.C. Pieper, Nuclear trans- parency to intermediateenergy nucleons from (e, e p) reactions. Phys. Rev. C 45(2), 791-798 (1992). https:// doi.org/10.1103/PhysRevC.45.791
  87. E.S. Pinzon Guerra et al., Using world charged π ± -nucleus scattering data to constrain an intranu- clear cascade model. Phys. Rev. D 99(5), 052007 (2019). https://doi.org/10.1103/PhysRevD.99.052007. arXiv:1812.06912 [hep-ex]
  88. M.G. Aartsen et al., First observation of PeV-energy neutrinos with IceCube. Phys. Rev. Lett. 111(2), 021103 (2013). https://doi.org/10.1103/PhysRevLett. 111.021103. arXiv:1304.5356 [astro-ph.HE]
  89. M.G. Aartsen et al., Evidence for high-energy extrater- restrial neutrinos at the IceCube Detector. Science 342(6161), 1242856 (2013). https://doi.org/10.1126/ science.1242856. arXiv:1311.5238 [astro-ph.HE]
  90. M.G. Aartsen et al., Observation of high-energy astrophysical neutrinos in three years of IceCube Data. Phys. Rev. Lett. 113(10), 101101 (2014). https://doi.org/10.1103/PhysRevLett.113.101101. arXiv:1405.5303 [astro-ph.HE]
  91. H. Abreu et al., Technical Proposal: FASERν. arXiv:2001.03073 [physics.ins-det]
  92. S. Alekhin et al., A facility to search for hidden parti- cles at the CERN SPS: the SHiP physics case. Rept. Progr. Phys. 79(12), 124201 (2016). https://doi.org/ 10.1088/0034-4885/79/12/124201. arXiv:1504.04855 [hep-ph]
  93. A. Garcia et al., Complete predictions for high- energy neutrino propagation in matter. JCAP 2020, 025 (2009). https://doi.org/10.1088/1475-7516/2020/ 09/025. arXiv:2004.04756 [hep-ph]
  94. V. Bertone, S. Carrazza, J. Rojo, APFEL: a PDF evo- lution library with QED corrections. Comput. Phys. Commun. 185(6), 1647-1668 (2014). https://doi.org/ 10.1016/j.cpc.2014.03.007. arXiv:1310.1394 [hep-ph]
  95. V. Bertone, R. Gauld, J. Rojo, Neutrino telescopes as QCD microscopes. JHEP 01, 217 (2019). https:// doi.org/10.1007/JHEP01(2019)217. arXiv:1808.02034 [hep-ph]
  96. R.D. Ball et al., Parton distributions with small- x resummation: evidence for BFKL dynamics in HERA data. Eur. Phys. J. C 78(4), 321 (2018). https://doi.org/10.1140/epjc/s10052-018-5774-4. arXiv:1710.05935 [hep-ph]
  97. R. Aaij et al., Prompt charm production in pp col- lisions at √ s = 7 TeV. Nucl. Phys. B 871(1), 1- 20 (2013). https://doi.org/10.1016/j.nuclphysb.2013. 02.010. arXiv:1302.2864 [hep-ex]
  98. R. Aaij et al., Measurements of prompt charm pro- duction cross-sections in pp collisions at √ s = 13
  99. TeV. JHEP 03 (2016). [Erratum: ibid. 09 (2016) p. 013, ibid. 05 (2017) p. 074], p. 159. https://doi. org/10.1007/JHEP03(2016)159, https://doi.org/10. 1007/JHEP09(2016)013, https://doi.org/10.1007/ JHEP05(2017)074. arXiv:1510.01707 [hep-ex]
  100. R. Aaij et al., Measurements of prompt charm pro- duction cross-sections in pp collisions at √ s = 5
  101. TeV. JHEP 06, 147 (2017). https://doi.org/10.1007/ JHEP06(2017)147. arXiv:1610.02230 [hep-ex]
  102. S. Forte et al., Heavy quarks in deep-inelastic scat- tering. Nucl. Phys. B 834(1-2), 116-162 (2010). https://doi.org/10.1016/j.nuclphysb.2010.03.014. arXiv:1001.2312 [hep-ph]
  103. A. Cooper-Sarkar, P. Mertsch, S. Sarkar, The high energy neutrino cross-section in the Standard Model and its uncertainty. JHEP 08, 042 (2011). https://doi. org/10.1007/JHEP08(2011)042. arXiv:1106.3723 [hep- ph]
  104. G. Ingelman, A. Edin, J. Rathsman, LEPTO 6.5: A Monte Carlo generator for deep inelastic lepton-nucleon scattering. Comput. Phys. Commun. 101(1-2), 108-134 (1997). https://doi.org/10.1016/ S0010-4655(96)00157-9. arXiv:hep-ph/9605286
  105. M.M. Tzanov et al., Precise measurement of neu- trino and anti-neutrino differential cross sections. Phys. Rev. D 74(1), 012008 (2006). https://doi.org/10.1103/ PhysRevD.74.012008. arXiv:hep-ex/0509010
  106. R. U. Abbasi et al., Measurement of the high-energy all-flavor neutrino-nucleon cross section with IceCube. Phys. Rev. D 104, 2 (2021). arXiv:2011.03560 [hep-ex]
  107. D.Z. Freedman, Coherent neutrino nucleus scattering as a probe of the weak neutral current. Phys. Rev. D 9(5), 1389-1392 (1974). https://doi.org/10.1103/ PhysRevD.9.1389
  108. D. Akimov et al., Observation of coherent elastic neutrino-nucleus scattering. Science 357(6356), 1123- 1126 (2017). https://doi.org/10.1126/science.aao0990. arXiv:1708.01294 [nucl-ex]
  109. D. Akimov et al., First measurement of coherent elas- tic neutrino-nucleus scattering on Argon. Phys. Rev. Lett. 126(1), 012002 (2021). https://doi.org/10.1103/ PhysRevLett.126.012002. arXiv:2003.10630 [nucl-ex]
  110. E. Ciuffoli et al., Extracting nuclear form factors with coherent neutrino scattering. Phys. Rev. D 97(11), 113003 (2018). https://doi.org/10.1103/PhysRevD.97. 113003. arXiv:1801.02166 [physics.ins-det]
  111. N. Van Dessel et al., Nuclear structure physics in coherent elastic neutrino-nucleus scattering. arXiv:2007.03658 [nucl-th]
  112. J. Billard, J. Johnston, B.J. Kavanagh, Prospects for exploring new physics in coherent elastic neutrino-nucleus scattering. JCAP 2018, 016 (1811). https://doi.org/10.1088/1475-7516/2018/11/ 016. arXiv:1805.01798 [hep-ph]
  113. M. Bowen, P. Huber, Reactor neutrino applications and coherent elastic neutrino nucleus scattering. Phys. Rev. D 102(5), 053008 (2020). https://doi.org/10.1103/ PhysRevD.102.053008. arXiv:2005.10907 [physics.ins- det]
  114. S. Gardiner, Simulating low-energy neutrino interac- tions with MARLEY. arXiv:2101.11867 [nucl-th]
  115. K. Patton et al., Neutrino-nucleus coherent scatter- ing as a probe of neutron density distributions. Phys. Rev. C 86(2), 024612 (2012). https://doi.org/10.1103/ PhysRevC.86.024612. arXiv:1207.0693 [nucl-th]
  116. J. Tena-Vidal et al., AGKY Hadronization Model Tun- ing in GENIE v3. arXiv:2106.05884 [hep-ph]
  117. P. V. Abratenko et al., Measurement of differen- tial cross sections for νμ-Ar charged-current interac- tions with protons and no pions in the final state with the MicroBooNE detector. Phys. Rev. D 102.11 (2020), p. 112013. https://doi.org/10.1103/PhysRevD. 102.112013. arXiv:2010.02390 [hep-ex]. 30 Will be inserted by the editor
  118. T.T. Le et al., Measurement of νμ charged-current single π -production on hydrocarbon in the few- GeV region using MINERνA. Phys. Rev. D 100(5), 052008 (2019). https://doi.org/10.1103/PhysRevD. 100.052008. arXiv:1906.08300 [hep-ex]
  119. J. Berger, A module for boosted dark matter event generation in GENIE. arXiv:1812.05616 [hep-ph]
  120. E. Bertuzzo et al., Dark Neutrino Portal to explain MiniBooNE excess. Phys. Rev. Lett. 121(24), 241801 (2018). https://doi.org/10.1103/PhysRevLett. 121.241801. arXiv:1807.09877 [hep-ph]
  121. M. Roda, I. de Icaza. Dark neutrino kinematics. GENIE docDB #206. https://genie-docdb.pp.rl.ac. uk/DocDB/0002/000206/002/Dark_Neutrino.pdf