Academia.eduAcademia.edu

Outline

Testing Methodology of Embedded DRAMs

2012, IEEE Transactions on Very Large Scale Integration (VLSI) Systems

https://doi.org/10.1109/TVLSI.2011.2161785

Abstract

The embedded-DRAM (eDRAM) testing mixes up the techniques used for DRAM testing and SRAM testing since an eDRAM core combines DRAM cells with an SRAM interface (the so-called 1T-SRAM architecture). In this paper, we first present our test algorithm for eDRAM testing. A theoretical analysis to the leakage mechanisms of a switch transistor is also provided, based on that we can test the eDRAM at a higher temperature to reduce the total test time and maintain the same retention-fault coverage. Finally, we propose a mathematical model to estimate the defect level caused by wear-out defects under the use of error-correction-code circuitry, which is a special function used in eDRAMs compared to commodity DRAMs. The experimental results are collected based on 1-lot wafers with an 16 Mb eDRAM core.

References (30)

  1. A. J. van de Goor, Testing Semiconductor Memories, Theory and Prac- tice. Gouda, The Netherlands: ComTex, 1998.
  2. G. Wang, K. Cheng, H. Ho, J. Faltermeier, W. Kong, H. Kim, J. Cai, C. Tanner, K. McStay, K. Balasubramanyam, C. Pei, L. Ninomiya, X. Li, K. Winstel, D. Dobuzinsky, M. Naeem, R. Zhang, R. Deschner, M. J. Brodsky, S. Allen, J. Yates, Y. Feng, P. Marchetti, C. Norris, D. Casarotto, J. Benedict, A. Kniffm, D. Parise, B. Khan, J. Barth, P. Parries, T. Kirihata, J. Norum, and S. S. Iyer, "A 0.127 m high per- formance 65 nm SOI based embedded DRAM for on-processor appli- cations," in Proc. Int. Electron Devices Meet., 2006, pp. 1-4.
  3. E. Gerritsen, N. Emonetb, C. Caillatb, N. Jourdanb, M. Piazzab, D. Frabouletd, B. Boeckc, A. Berthelota, S. Smitha, and P. Mazoyerb, "Evolution of materials technology for stacked-capacitors in 65 nm em- bedded-DRAM," Solid-State Electron., vol. 14, pp. 1767-1775, 2005.
  4. M.-E. Jones, "1T-SRAM-Q™: Quad-density technology reins in spi- raling memory requirements," Mosys, Inc., Santa Clara, CA, 2007.
  5. A. Berthelot, C. Caillat, V. Huard, S. Barnola, B. Boeck, H. Del-Puppo, N. Emonet, and F. Lalanne, "Highly reliable TiN/ZrO /TiN 3D stacked capacitors for 45 nm embedded DRAM technologies," in Proc. Solid- State Device Res. Conf., 2006, pp. 343-346.
  6. TSMC, Hsinchu, Taiwan, "TSMC embedded high density memory," [Online]. Available: http://www.tsmc.com/
  7. UMC, Hsinchu, Taiwan, "0.13 micron SoC process technology," [On- line]. Available: http://www.umc.com/
  8. M.-R. Amerian, W. D. Atwell, I. Burgess, G. D. Fleeman, D. Y. Lepe- jian, T. W. Williams, F. Zarrinfar, and Y. Zorian, "A D&T Roundtable: Testing mixed logic and DRAM chips," IEEE Design Test Comput., vol. 15, no. 2, pp. 86-92, Apr.-Jun. 1998.
  9. C. Cheng, C.-T. Huang, J.-R. Huang, C.-W. Wu, C.-J. Wey, and M.-C. Tsai, "BRAINS: A BIST compiler for embedded memories," in Proc. IEEE Int. Symp. Defect Fault Toler. VLSI Syst., 2000, pp. 299-307.
  10. J.-F. Li, R.-S. Tzeng, and C.-W. Wu, "Diagnostic data compression techniques for embedded memories with built-in self-test," J. Electron. Test.: Theory Appl., vol. 18, no. 4, pp. 515-527, Aug. 2002.
  11. B. Nadeau-Dostie, A. Silburt, and V. K. Agarwal, "Serial interfacing for embedded memory testing," IEEE Design Test Comput., vol. 7, no. 2, pp. 52-63, Apr. 1990.
  12. C.-T. Huang, J.-R. Huang, C.-F. Wu, C.-W. Wu, and T.-Y. Chang, "A programmable BIST core for embedded DRAM," IEEE Design Test Comput., vol. 16, no. 1, pp. 59-70, Jan.-Mar. 1999.
  13. J. E. Barth, J. H. Dreibelbis, E. A. Nelson, D. L. Anand, G. Pomichter, P. Jakobsen, M. R. Nelms, J. Leach, and G. M. Belansek, "Embedded DRAM design and architecture for the IBM 0.11-m ASIC offering," IBM J. Res. Develop., vol. 46, no. 6, pp. 675-689, Nov. 2002.
  14. S. Miyano, K. Sato, and K. Numata, "Universal test interface for em- bedded-DRAM testing," IEEE Design Test Comput., vol. 16, no. 1, pp. 59-70, Jan.-Mar. 1999.
  15. N. Watanabe, F. Morishita, Y. Taito, A. Yamazaki, T. Tanizaki, K. Dosaka, Y. Morooka, F. Igaue, K. Furue, Y. Nagura, T. Komoike, T. Morihara, A. Hachisuka, K. Arimoto, and H. Ozaki, "An embedded DRAM hybrid macro with auto signal management and enhanced-on- chip tester," in Dig. Tech. Papers IEEE Int. Solid-State Circuits Conf. (ISSCC), 2001, pp. 388-389.
  16. S. Mukhopadhyay, A. Raychowdhury, and K. Roy, "Accurate estima- tion of total leakage in nanometer-scale bulk CMOS circuits based on device geometry and doping profile," IEEE Trans. Comput.-Aided De- sign Integr. Circuits Syst., vol. 24, no. 3, pp. 363-381, Mar. 2005.
  17. K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, "Leakage current mechanisms and leakage reduction techniques in deep-submi- crometer CMOS circuits," Proc. IEEE, vol. 91, no. 2, pp. 305-327, Feb. 2003.
  18. Electronic Industries Association and JEDEC Solid State Technology Association, Arlington, VA, "Steady state temperature humidity bias life test," EIA/JESD22-A101-B, Apr. 1997.
  19. Electronic Industries Association and JEDEC Solid State Technology Association, Arlington, VA, "Highly-accelerated temperature and hu- midity stress test," EIA/JESD22-A110-B, Jun. 2008.
  20. JEDEC Solid State Technology Association, Arlington, VA, "Temper- ature, bias, and operating life," JESD22-A108C, June 2005.
  21. A. J. van de Goor and I. Schanstra, "Address and data scrambling: Causes and impact on memory tests," in Proc. 1st IEEE Int. Workshop Electron. Design, Test, Appl., 2002, pp. 128-136.
  22. K.-L. Cheng, M.-F. Tsai, and C.-W. Wu, "Neighborhood pattern-sensi- tive fault testing and diagnostics for random-access memories," IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 21, no. 11, pp. 1328-1336, Nov. 2002.
  23. Mentor Graphics Corporation, Wilsonville, OR, "MBIST architecht reference manual," Vol. 8, Mar. 2003.
  24. Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. New York: Cambridge Univ. Press, 1998.
  25. A. Pavlov, M. Azimane, J. P. de Gyvez, and M. Sachdev, "Word line pulsing technique for stability fault detection in SRAM cells," in Proc. IEEE Int. Test Conf., 2005, pp. 816-825.
  26. L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, and H. H. Magali Bastian, "Data retention fault in SRAM memories: Analysis and detec- tion procedures," in Proc. IEEE VLSI Test Symp., 2005, pp. 183-188.
  27. J. Yang, B. Wang, Y. Wu, and A. Ivanov, "Fast detection of data reten- tion faults and other SRAM cell open defects," IEEE Trans. Comput.- Aided Design Integr. Circuits Syst., vol. 25, no. 1, pp. 167-180, Jan. 2006.
  28. A. Ney, L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, M. Bas- tian, and V. Gouin, "A new design-for-test technique for SRAM core- cell stability faults," in Proc. Design, Autom., Test Eur. Conf. Exhib., 2009, pp. 1344-1348.
  29. L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, S. Borri, and H. H. Magali, "Resistive-open defects in embedded-SRAM core cells: Analysis and march test solution," in Proc. Asian Test Symp., 2004, pp. 266-271.
  30. Q. Chen, H. Mahmoodi, S. Bhunia, and K. Roy, "Efficient testing of SRAM with optimized march sequences and a novel DFT technique for emerging failures due to process variations," IEEE Trans. Very Large Scale Integr. Syst., vol. 13, no. 11, pp. 1286-1295, Nov. 2005.