Testing Methodology of Embedded DRAMs
2012, IEEE Transactions on Very Large Scale Integration (VLSI) Systems
https://doi.org/10.1109/TVLSI.2011.2161785Abstract
The embedded-DRAM (eDRAM) testing mixes up the techniques used for DRAM testing and SRAM testing since an eDRAM core combines DRAM cells with an SRAM interface (the so-called 1T-SRAM architecture). In this paper, we first present our test algorithm for eDRAM testing. A theoretical analysis to the leakage mechanisms of a switch transistor is also provided, based on that we can test the eDRAM at a higher temperature to reduce the total test time and maintain the same retention-fault coverage. Finally, we propose a mathematical model to estimate the defect level caused by wear-out defects under the use of error-correction-code circuitry, which is a special function used in eDRAMs compared to commodity DRAMs. The experimental results are collected based on 1-lot wafers with an 16 Mb eDRAM core.
References (30)
- A. J. van de Goor, Testing Semiconductor Memories, Theory and Prac- tice. Gouda, The Netherlands: ComTex, 1998.
- G. Wang, K. Cheng, H. Ho, J. Faltermeier, W. Kong, H. Kim, J. Cai, C. Tanner, K. McStay, K. Balasubramanyam, C. Pei, L. Ninomiya, X. Li, K. Winstel, D. Dobuzinsky, M. Naeem, R. Zhang, R. Deschner, M. J. Brodsky, S. Allen, J. Yates, Y. Feng, P. Marchetti, C. Norris, D. Casarotto, J. Benedict, A. Kniffm, D. Parise, B. Khan, J. Barth, P. Parries, T. Kirihata, J. Norum, and S. S. Iyer, "A 0.127 m high per- formance 65 nm SOI based embedded DRAM for on-processor appli- cations," in Proc. Int. Electron Devices Meet., 2006, pp. 1-4.
- E. Gerritsen, N. Emonetb, C. Caillatb, N. Jourdanb, M. Piazzab, D. Frabouletd, B. Boeckc, A. Berthelota, S. Smitha, and P. Mazoyerb, "Evolution of materials technology for stacked-capacitors in 65 nm em- bedded-DRAM," Solid-State Electron., vol. 14, pp. 1767-1775, 2005.
- M.-E. Jones, "1T-SRAM-Q™: Quad-density technology reins in spi- raling memory requirements," Mosys, Inc., Santa Clara, CA, 2007.
- A. Berthelot, C. Caillat, V. Huard, S. Barnola, B. Boeck, H. Del-Puppo, N. Emonet, and F. Lalanne, "Highly reliable TiN/ZrO /TiN 3D stacked capacitors for 45 nm embedded DRAM technologies," in Proc. Solid- State Device Res. Conf., 2006, pp. 343-346.
- TSMC, Hsinchu, Taiwan, "TSMC embedded high density memory," [Online]. Available: http://www.tsmc.com/
- UMC, Hsinchu, Taiwan, "0.13 micron SoC process technology," [On- line]. Available: http://www.umc.com/
- M.-R. Amerian, W. D. Atwell, I. Burgess, G. D. Fleeman, D. Y. Lepe- jian, T. W. Williams, F. Zarrinfar, and Y. Zorian, "A D&T Roundtable: Testing mixed logic and DRAM chips," IEEE Design Test Comput., vol. 15, no. 2, pp. 86-92, Apr.-Jun. 1998.
- C. Cheng, C.-T. Huang, J.-R. Huang, C.-W. Wu, C.-J. Wey, and M.-C. Tsai, "BRAINS: A BIST compiler for embedded memories," in Proc. IEEE Int. Symp. Defect Fault Toler. VLSI Syst., 2000, pp. 299-307.
- J.-F. Li, R.-S. Tzeng, and C.-W. Wu, "Diagnostic data compression techniques for embedded memories with built-in self-test," J. Electron. Test.: Theory Appl., vol. 18, no. 4, pp. 515-527, Aug. 2002.
- B. Nadeau-Dostie, A. Silburt, and V. K. Agarwal, "Serial interfacing for embedded memory testing," IEEE Design Test Comput., vol. 7, no. 2, pp. 52-63, Apr. 1990.
- C.-T. Huang, J.-R. Huang, C.-F. Wu, C.-W. Wu, and T.-Y. Chang, "A programmable BIST core for embedded DRAM," IEEE Design Test Comput., vol. 16, no. 1, pp. 59-70, Jan.-Mar. 1999.
- J. E. Barth, J. H. Dreibelbis, E. A. Nelson, D. L. Anand, G. Pomichter, P. Jakobsen, M. R. Nelms, J. Leach, and G. M. Belansek, "Embedded DRAM design and architecture for the IBM 0.11-m ASIC offering," IBM J. Res. Develop., vol. 46, no. 6, pp. 675-689, Nov. 2002.
- S. Miyano, K. Sato, and K. Numata, "Universal test interface for em- bedded-DRAM testing," IEEE Design Test Comput., vol. 16, no. 1, pp. 59-70, Jan.-Mar. 1999.
- N. Watanabe, F. Morishita, Y. Taito, A. Yamazaki, T. Tanizaki, K. Dosaka, Y. Morooka, F. Igaue, K. Furue, Y. Nagura, T. Komoike, T. Morihara, A. Hachisuka, K. Arimoto, and H. Ozaki, "An embedded DRAM hybrid macro with auto signal management and enhanced-on- chip tester," in Dig. Tech. Papers IEEE Int. Solid-State Circuits Conf. (ISSCC), 2001, pp. 388-389.
- S. Mukhopadhyay, A. Raychowdhury, and K. Roy, "Accurate estima- tion of total leakage in nanometer-scale bulk CMOS circuits based on device geometry and doping profile," IEEE Trans. Comput.-Aided De- sign Integr. Circuits Syst., vol. 24, no. 3, pp. 363-381, Mar. 2005.
- K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, "Leakage current mechanisms and leakage reduction techniques in deep-submi- crometer CMOS circuits," Proc. IEEE, vol. 91, no. 2, pp. 305-327, Feb. 2003.
- Electronic Industries Association and JEDEC Solid State Technology Association, Arlington, VA, "Steady state temperature humidity bias life test," EIA/JESD22-A101-B, Apr. 1997.
- Electronic Industries Association and JEDEC Solid State Technology Association, Arlington, VA, "Highly-accelerated temperature and hu- midity stress test," EIA/JESD22-A110-B, Jun. 2008.
- JEDEC Solid State Technology Association, Arlington, VA, "Temper- ature, bias, and operating life," JESD22-A108C, June 2005.
- A. J. van de Goor and I. Schanstra, "Address and data scrambling: Causes and impact on memory tests," in Proc. 1st IEEE Int. Workshop Electron. Design, Test, Appl., 2002, pp. 128-136.
- K.-L. Cheng, M.-F. Tsai, and C.-W. Wu, "Neighborhood pattern-sensi- tive fault testing and diagnostics for random-access memories," IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 21, no. 11, pp. 1328-1336, Nov. 2002.
- Mentor Graphics Corporation, Wilsonville, OR, "MBIST architecht reference manual," Vol. 8, Mar. 2003.
- Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. New York: Cambridge Univ. Press, 1998.
- A. Pavlov, M. Azimane, J. P. de Gyvez, and M. Sachdev, "Word line pulsing technique for stability fault detection in SRAM cells," in Proc. IEEE Int. Test Conf., 2005, pp. 816-825.
- L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, and H. H. Magali Bastian, "Data retention fault in SRAM memories: Analysis and detec- tion procedures," in Proc. IEEE VLSI Test Symp., 2005, pp. 183-188.
- J. Yang, B. Wang, Y. Wu, and A. Ivanov, "Fast detection of data reten- tion faults and other SRAM cell open defects," IEEE Trans. Comput.- Aided Design Integr. Circuits Syst., vol. 25, no. 1, pp. 167-180, Jan. 2006.
- A. Ney, L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, M. Bas- tian, and V. Gouin, "A new design-for-test technique for SRAM core- cell stability faults," in Proc. Design, Autom., Test Eur. Conf. Exhib., 2009, pp. 1344-1348.
- L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, S. Borri, and H. H. Magali, "Resistive-open defects in embedded-SRAM core cells: Analysis and march test solution," in Proc. Asian Test Symp., 2004, pp. 266-271.
- Q. Chen, H. Mahmoodi, S. Bhunia, and K. Roy, "Efficient testing of SRAM with optimized march sequences and a novel DFT technique for emerging failures due to process variations," IEEE Trans. Very Large Scale Integr. Syst., vol. 13, no. 11, pp. 1286-1295, Nov. 2005.