Academia.eduAcademia.edu

Outline

Even-hole-free planar graphs have bounded treewidth

2008, Electronic Notes in Discrete Mathematics

https://doi.org/10.1016/J.ENDM.2008.01.022

Abstract

The class of planar graphs has unbounded treewidth, since the k × k grid, ∀k ∈ N, is planar and has treewidth k. So, it is of interest to determine subclasses of planar graphs which have bounded treewidth. In this paper, we show that if G is an evenhole-free planar graph, then it does not contain a 9 × 9 grid minor. As a result, we have that even-hole-free planar graphs have treewidth at most 44.

References (9)

  1. Addario-Berry, L., M. Chudnovsky, F. Havet, B. Reed and P. Seymour, Bisimplicial vertices in even-hole-free graphs (2006), submitted to J. of Comb. Theory, Series B.
  2. Biró, C., Treewidth and grids, Technical report, School of Mathematics, Georgia Institute of Technology (2005).
  3. Conforti, M., G. Cornuéjols, A. Kapoor and K. Vuskovic, Even-hole-free graphs part i: Decomposition theorem, J. Graph Theory 39 (2002), pp. 6-49.
  4. Kuratowski, C., Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930), pp. 271-283.
  5. Robertson, N., D. Sanders, P. Seymour and R. Thomas, The four-colour theorem, J. of Comb. Theory, Series B. 70 (1997), pp. 2-44.
  6. Robertson, N., P. Seymour and R. Thomas, Quickly excluding a planar graph, J. of Comb. Theory, Series B 62 (1994), pp. 323-348.
  7. Robertson, N., P. Seymour and R. Thomas, Tree decompositions of graphs, www.math.gatech.edu/∼thomas/SLIDE/CBMS/trdec.pdf (2000).
  8. Silva, A., "Decomposição e Largura em Árvore de Grafos Planares Livres de Ciclos Pares Induzidos," Master's thesis, Universidade Federal do Ceará (2007).
  9. Silva, A., A. Silva and C. Linhares Sales, Largura em Árvore de grafos planares livres de ciclos pares induzidos, Anais do 39o. SBPO (2007), to appear.