Academia.eduAcademia.edu

Outline

K 6 minors in 6-connected graphs of bounded tree-width

Journal of Combinatorial Theory, Series B

https://doi.org/10.1016/J.JCTB.2017.08.006

Abstract

We prove that every sufficiently large 6-connected graph of bounded treewidth either has a K 6 minor, or has a vertex whose deletion makes the graph planar. This is a step toward proving that the same conclusion holds for all sufficiently large 6-connected graphs. Jørgensen conjectured that it holds for all 6-connected graphs.

References (24)

  1. S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems on graphs embedded in k-trees, Discrete Appl. Math. 23 (1989), 11-24.
  2. T. Böhme, J. Maharry and B. Mohar, K a,k -minors in graphs of bounded tree-width, J. Combin. Theory Ser. B 86 (2002), 133-147.
  3. T. Böhme, K. Kawarabayashi, J. Maharry and B. Mohar, Linear connectivity forces large complete bipartite minors, J. Combin. Theory Ser. B 99 (2009), 323-346.
  4. M. DeVos and P. D. Seymour, Extending partial 3-colourings in a planar graph, J. Com- bin. Theory Ser. B 88 (2003), 219-225.
  5. R. Diestel, K. Yu. Gorbunov, T. R. Jensen, and C. Thomassen, Highly connected sets and the excluded grid theorem, J. Combin. Theory Ser. B 75 (1999), 61-73.
  6. G. A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, J. London Math. Soc. 27 (1952), 85-92.
  7. H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljschr. Naturforsch. Gessellsch. Zürich 88 (1943), 133-142.
  8. R. Halin, S-functions for graphs, J. Geometry 8 (1976), 171-186.
  9. L. Jorgensen, Contraction to K 8 , J. Graph Theory 18 (1994), 431-448.
  10. K. Kawarabayashi, S. Norine, R. Thomas and P. Wollan, K 6 minors in large 6-connected graphs, manuscript.
  11. W. Mader, Über trennende Eckenmengen in homomorphiekritische Graphen, Math. Ann. 175 (1968), 245-252.
  12. B. Oporowski, J. Oxley and R. Thomas, Typical subgraphs of 3-and 4-connected graphs, J. Combin. Theory Ser. B 57 (1993), 239-257.
  13. B. A. Reed, Tree width and tangles: a new connectivity measure and some applications, Surveys in Combinatorics, London Mathematical Society Lecture Series 241, R. A. Bai- ley ed., Cambridge University Press 1997.
  14. N. Robertson and P. D. Seymour, Graph Minors III. Planar tree-width, J. Combin. Theory Ser. B 36 (1984), 49-63.
  15. N. Robertson and P. D. Seymour, Graph Minors V. Excluding a planar graph, J. Com- bin. Theory Ser. B 41 (1986), 92-114.
  16. N. Robertson and P. D. Seymour, Graph Minors IX. Disjoint crossed paths, J. Combin. Theory Ser. B 49 (1990), 40-77.
  17. N. Robertson and P. D. Seymour, Graph Minors XIII. The disjoint paths problem, J. Combin. Theory Ser. B 63 (1995), 65-110.
  18. N. Robertson, P. D. Seymour and R. Thomas, Hadwiger's conjecture for K 6 -free graphs, Combinatorica 13 (1993), 279-361.
  19. N. Robertson, P. D. Seymour and R. Thomas, Quickly excluding a planar graph, J. Com- bin. Theory Ser. B 62 (1994), 323-348.
  20. N. Robertson, P. D. Seymour and R. Thomas, Non-planar extensions of planar graphs, Available from http://www.math.gatech.edu/ ˜thomas/PAP/ext.pdf.
  21. P. D. Seymour and R. Thomas, Graph searching, and a min-max theorem for tree-width, J. Combin. Theory Ser. B 58 (1993), 22-33.
  22. R. Thomas, A Menger-like property of tree-width. The finite case, J. Combin. Theory Ser. B 48 (1990), 67-76.
  23. W. T. Tutte, Graph Theory, Addison-Wesley, Menlo Park, CA, 1984.
  24. K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937), 570- 590. This material is based upon work supported by the National Science Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.