Academia.eduAcademia.edu

Outline

Planar graphs and poset dimension

1989, Order

https://doi.org/10.1007/BF00353652

Abstract

We view the incidence relation of a graph G=(I: E) as an order relation on ~ts vertices and edges, i.e. a <6 b if and only ifa is a vertex and b is an edge incident on a. This leads to the definition of the order-dimension of G as the minimum number of total orders on I'~ E whose intersection is <G. Our main result ~s the characterization of planar graphs as the graphs whose order-dimension does not exceed three. Strong versions of several known properties of planar graphs are ~mphed by this characterizahon These properhes include: each planar graph has arboricn) at most three and each planar graph has a plane embedding ~hose edges are straight line segments. A nice feature of this embedding ~s that the coordinates of the vertices have a purely combmatoriaI meaning.

References (23)

  1. L. Babal and D. Duffus (1981) Dimension and automorphism groups of lattices, A/g, Umv. 12, 279-289.
  2. B. Dushnik (1950) Concerning a certain set of arrangements, Proc. Amer Math. Soc 1, 788- 796.
  3. B. Dushnik and E. W. Miller ( 1941) Partially ordered sets, Amer J Math 63, 600-610.
  4. Ffiry (1948) On straight line representation of planar graphs, Acta Set. Math Szeged 11, 229-233.
  5. T Gallal (1967) Transitiv orientierbare Graphen, Acta Math. Acad Sct Hungar 18, 25-66.
  6. M.C. Golumbic (1977) The complexity of comparability graph recognition and coloring, Computmg 18, 199-203.
  7. R. G~sln (1977) Dimension transltlV orientlerbarer Graphen, Acta Math Acad Sct Hungar 29, 313-316.
  8. T. Hlraguchl (1951) On the dimension of orders, Sct Rep Kanazawa Umv 1, 77-94.
  9. G R. Kampen (1976) Orienting planar graphs, Dz,screte 34ath 14,337-341.
  10. D. Kell} (1977) The 3-irreducible partially ordered sets, Canad. J Math 29,367-383.
  11. H. Komm (1948) On the dimension of partially ordered sets, Amer. J Math. 70, 507-520.
  12. D. Kelly and W.T. Trotter Jr. (1982) Dimension theory for ordered sets, in I. Rival (ed.), Ordered Sets, D. Reldel, Dordrecht, pp. 171-211.
  13. C. St J.A. Nash-Williams (1961) Edge disjoint trees of finite graphs, J London Math Soc 36,445-450.
  14. J. Spencer (1971) Minimal acrambling sets of simple orders, ,4eta Math Acad Scz Hungar 22, 349-353.
  15. V. Sedmak (1954) Quelques apphcations des ensembles ordonn6s, Bzdl, Soc Math Ph)',~ Serhte 6, 12-39, 131-153.
  16. S. K. Stein (1951) Convex maps, Proc Amer Math Soc 2,464-466.
  17. E. Szpilrajn (1930) Sur l'extenslon de l'ordre partiel, Fund Math 16,386-389.
  18. W. T. Trotter Jr. (1983) Graphs and Partially Ordered Sets, m L. Bemeke (ed.), Graph Theory. Vol. 2, Academic Press, London, pp. 237-268.
  19. W.T. Trotter, Jr and J. 1. Moore Jr, (1976) Characterization problems for graphs, partially ordered sets, lattices and famlhes &sets, Dz,wrete Math 16, 361-38 I.
  20. W.T. Trotter, J. I. Moore and D. E Sumner (1976) The dimension of a comparability graph, Proc. Amer Math Soc. 60, 35-38.
  21. K. Wagner (1936) Bemerkungen zum Vierfarbenproblem, ,labor,her Deut,~h ltath -!'erem 46, 26-32.
  22. D. B. West (1985) Parameters of partial orders and graphs: packing, covering, and representatmn, in I. Rival (ed.), Graph,s and Orders, D, Reidel, Dordrecht, pp. 267-350.
  23. M. Yannakakls (1982) The complexity of the partial order dimension problem, SI, 1U J Alg. Dzscrete Method,~ 3, 351-358.