Academia.eduAcademia.edu

Outline

On planar graphs with large tree-width and small grid minors

2009, Electronic Notes in Discrete Mathematics

https://doi.org/10.1016/J.ENDM.2009.02.006

Abstract

We show that for a planar graph with no g-grid minor there exists a tree-decomposition of width at most 5g − 6. The proof is constructive and simple. The underlying algorithm for the tree-decomposition runs in O(n 2 log n) time.

References (17)

  1. Ahuja, R.K., T.L. Magnanti, J.B. Orlin. 1993. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Inc., Upper Saddle River, New Jersey.
  2. Alon, N., P.D. Seymour, R. Thomas. 1994. Planar Separators. SIAM J. on Discrete Math. 7, 184-193.
  3. Bondy, J.A., U.S.R. Murty. 2008. Graph Theory. Springer, New York.
  4. Bodlaender, H.L., A. Grigoriev, A.M.C.A. Koster. 2008. Treewidth lower bounds with brambles. Algo- rithmica 51, 81-98.
  5. Gu, Q.P., H. Tamaki. 2009. Constant-factor approximations of branch-decomposition and largest grid minor of planar graphs in O(n 1+ε ) time. In Y. Dong, D.-Z. Du, O.H. Ibarra (Eds.), Proceedings of the 20th International Symposium (ISAAC'2009). Lecture Notes in Computer Science 5878, Springer, 85-96.
  6. Gu, Q.P., H. Tamaki. 2010. Improved bounds on the planar branchwidth with respect to the largest grid minor size. In O. Cheong, K.-Y. Chwa, K. Park (Eds.), Proceedings of the 21st International Symposium (ISAAC'2010). Lecture Notes in Computer Science 6507, Springer, 984-993.
  7. Gu, Q.P., H. Tamaki. 2008. Optimal branch decomposition of planar graphs in O(n 3 ) time. ACM Trans. Algorithms 4, 1-13.
  8. Hicks, I.V. 2005a. Planar branch decompositions I: The ratcatcher. INFORMS J. on Computing 17, 402- 412.
  9. Hicks, I.V. 2005b. Planar branch decompositions II: The cycle method. INFORMS J. on Computing 17, 413-421.
  10. Hopcroft, J.E., R.E. Tarjan. 1974. Efficient planarity testing, J. ACM 21, 549-568.
  11. Menger, K. 1927. Zur allgemeinen Kurventheorie. Fund. Math. 10, 96-115.
  12. Robertson, N., P.D. Seymour. 1984. Graph minors. III. Planar tree-width. J. Combin. Theory Ser. B 36, 49-64.
  13. Robertson, N., P.D. Seymour. 1991. Graph minors. X. Obstructions to Tree-Decomposition. J. Combin. Theory Ser. B 52, 153-190.
  14. Robertson, N., P.D. Seymour, R. Thomas. 1994. Quickly excluding a planar graph. J. Combin. Theory Ser. B 62, 323-348.
  15. Seymour, P.D., R. Thomas. 1994. Call routing and the ratcatcher. Combinatorica 14, 217-241.
  16. Thomas, R. 2007a. Personal communications, June-July 2007.
  17. Thomas, R. 2007b. Tree-decompositions of graphs. Retrieved in June-July 2007 from http://www.math.gatech.edu/ thomas/SLIDE/slide2.ps, p. 32.