Academia.eduAcademia.edu

Outline

From discrete- to continuous-time ergodic theorems

2012, Ergodic Theory and Dynamical Systems

https://doi.org/10.1017/S0143385711000848

Abstract

We introduce methods that allow us to derive continuous-time versions of various discrete-time ergodic theorems. We then illustrate these methods by giving simple proofs and refinements of some known results as well as establishing new results of interest.

References (27)

  1. I. Assani. Multiple recurrence and almost sure convergence for weakly mixing dynamical systems. Israel J. Math. 163 (1998), 111-124.
  2. T. Austin. On the norm convergence of nonconventional ergodic averages. Ergod. Th. & Dynam. Sys. 30(2) (2010), 321-338.
  3. T. Austin. Norm convergence of continuous-time polynomial multiple ergodic averages. Ergod. Th. & Dynam. Sys. to appear.
  4. V. Bergelson and I. Håland. Knutson weak mixing implies weak mixing of higher orders along tempered functions. Ergod. Th. & Dynam. Sys. 29 (2009), 1375-1416.
  5. V. Bergelson and A. Leibman. Distribution of values of bounded generalized polynomials. Acta Math. 198 (2007), 155-230.
  6. V. Bergelson, A. Leibman and R. McCutcheon. Polynomial Szemeredi theorem for countable modules over integral domains and finite fields. J. Anal. Math. 95 (2005), 243-296.
  7. V. Bergelson and R. McCutcheon. An ergodic IP polynomial Szemeredi theorem. Mem. Amer. Math. Soc. 146 (2000), viii+106pp.
  8. G. D. Birkhoff and B. O. Koopman. Recent contributions to the ergodic theory. Proc. Natl. Acad. Sci. USA 18 (1932), 279-282.
  9. J. Bourgain. Double recurrence and almost sure convergence. J. Reine Angew. Math. 404 (1990), 140-161.
  10. J. Bourgain. On the maximal ergodic theorem for certain subsets of the integers. Israel J. Math. 61(1) (1988), 39-72.
  11. N. Frantzikinakis. Multiple recurrence and convergence for Hardy sequences of polynomial growth. J. Anal. Math. 112 (2010), 79-135.
  12. N. Frantzikinakis and B. Kra. Convergence of multiple ergodic averages for some commuting transformations. Ergod. Th. & Dynam. Sys. 25(3) (2005), 799-809.
  13. E. Hopf. Ergodentheorie. Springer, Berlin, 1937.
  14. B. Host. Ergodic seminorms for commuting transformations and applications. Studia Math. 195 (2009), 31-49.
  15. B. Host and B. Kra. Non-conventional ergodic averages and nilmanifolds. Ann. of Math. (2) 161(1) (2005), 397-488.
  16. B. Host and B. Kra. Convergence of polynomial ergodic averages. Israel J. Math. 149 (2005), 1-19.
  17. M. Johnson. Convergence of polynomial ergodic averages of several variables for some commuting transformations. Illinois J. Math. 53(3) (2009), 865-882.
  18. A. N. Kolmogorov. A simplified proof of the Birkhoff-Khinchin ergodic theorem. Uspekhi Mat. Nauk 5 (1938), 52-56.
  19. A. Leibman. Multiple recurrence theorem for measure preserving actions of a nilpotent group. Geom. Funct. Anal. 8 (1998), 853-931.
  20. A. Leibman. Pointwise convergence of ergodic averages for polynomial actions of Z d by translations on a nilmanifold. Ergod. Th. & Dynam. Sys. 25 (2005), 215-225.
  21. A. Leibman. Convergence of multiple ergodic averages along polynomials of several variables. Israel J. Math. 146 (2005), 303-322.
  22. A. Leibman. Rational sub-nilmanifolds of a compact nilmanifold. Ergod. Th. & Dynam. Sys. 26 (2006), 787-798.
  23. A. Leibman. Orbits on a nilmanifold under the action of a polynomial sequence of translations. Ergod. Th. & Dynam. Sys. 27 (2007), 1239-1252.
  24. J. von Neumann. Physical applications of the ergodic hypothesis. Proc. Natl. Acad. Sci. USA 18(3) (1932), 263-266.
  25. A. Potts. Multiple ergodic averages for flows and an application. Illinois J. Math. to appear. arXiv:0910.3687.
  26. N. Shah. Limit distributions of polynomial trajectories on homogeneous spaces. Duke Math. J. 75(3) (1994), 711-732.
  27. T. Ziegler. Universal characteristic factors and Furstenberg averages. J. Amer. Math. Soc. 20(1) (2007), 53-97.