A note on the random mean ergodic theorem
1980, Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete
https://doi.org/10.1007/BF00534185Abstract
AI
AI
This note investigates the validity of a specific version of the random mean ergodic theorem under the condition of mixing for one-dimensional random walks. It builds on previous work to demonstrate that the convergence of certain integrals does not depend on various parameters such as the probability and function involved. The study includes proofs relevant to random walks with finite mean and explores the implications of ergodic automorphisms in non-atomic probability spaces.
References (7)
- Blum, J.R., Hanson, D.L.: On the mean ergodic theorem for subsequences. Bull. Amer. Math. Soc. 66, 308-311 (1960)
- Friedman, N.A.: Introduction to Ergodic Theory. New York-Cincinnati-Toronto-London-Mel- bourne: Van Nostrand Reinhold 1970
- Halmos, P.R.: Lectures on Ergodic Theory. New York: Chelsea 1956
- Kakutani, S.: Random ergodic theorems and Markoff processes with a stable distribution. In: Proc. 2 nd Berkeley Sympos. Math. Statist. and Probab. pp. 247-261. Berkeley-Los Angeles: Univ. Calif. Press 1951
- Reich, J.I.: On the individual ergodic theorem for subsequences. Ann. Probability 5, 1039-1046 (1977)
- Spitzer, F.: Principles of Random Walk (2nd Edition). New York-Heidelberg-Berlin: Springer 1976
- Ulam, S.M., von Neumarin, J.: Random ergodic theorem (abstract). Bull. Amer. Math. Soc. 51, 660 (1945)