Ergodic theorems for lower probabilities
2016, Proceedings of the American Mathematical Society
https://doi.org/10.1090/PROC/13086Abstract
We establish an Ergodic Theorem for lower probabilities, a generalization of standard probabilities widely used in applications. As a byproduct, we provide a version for lower probabilities of the Strong Law of Large Numbers.
References (22)
- C. D. Aliprantis and K. Border, Infinite Dimensional Analysis, 3rd ed., Springer, New York, 2006.
- J. O. Berger, Robust Bayesian analysis: sensitivity to the prior, Journal of Statistical Plan- ning and Inference, 25, 303-328, 1990.
- P. Billingsley, Probability and Measure, 3rd ed., John Wiley & Sons, New York, 1995.
- S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci, and L. Montrucchio, Signed Integral Rep- resentations of Comonotonic Additive Functionals, Journal of Mathematical Analysis and Applications, 385, 895-912, 2012.
- S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci, and L. Montrucchio, Choquet Integration on Riesz Spaces and Dual Comonotonicity, Transactions of the American Mathematical Society, forthcoming.
- S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci, and L. Montrucchio, Ambiguity and Robust Statistics, Journal of Economic Theory, 974-1049, 2013.
- F. Delbaen, Convex Games and Extreme Points, Journal of Mathematical Analysis and Applications, 45, 210-233, 1974.
- Y. N. Dowker, Invariant Measure and the Ergodic Theorems, Duke Mathematical Journal, 4, 1051-1061, 1947.
- Y. N. Dowker, Finite and σ-Finite Invariant Measures, Annals of Mathematics, 4, 595-608, 1951.
- R. M. Dudley, Real Analysis and Probability, 2nd ed., Cambridge University Press, Cam- bridge, 2002.
- N. Dunford and J. T. Schwartz, Linear Operators; Part I: General Theory, Wiley, New York, 1958.
- E. B. Dynkin, Sufficient Statistics and Extreme Points, The Annals of Probability, 6, 705-730, 1978.
- R. M. Gray, Probability, Random Processes, and Ergodic Properties, 2nd ed., Springer, New York, 2009.
- R. M. Gray and J. C. Kieffer, Asymptotically Mean Stationary Measures, The Annals of Probability, 8, 962-973, 1980.
- F. Maccheroni and M. Marinacci, A Strong Law of Large Numbers for Capacities, The Annals of Probability, 33, 1171-1178, 2005.
- M. Marinacci, Limit Laws for Non-additive Probabilities and Their Frequentist Interpretation, Journal of Economic Theory, 84, 145-195, 1999.
- M. Marinacci and L. Montrucchio, Introduction to the Mathematics of Ambiguity, in Uncer- tainty in Economic Theory, Routledge, New York, 2004.
- R. R. Phelps, Lectures on Choquet's Theorem, 2nd ed., Springer, 2001.
- G. Shafer, Belief functions and parametric models, Journal of the Royal Statistical Society: Series B, 44, 322-352, 1982.
- D. Schmeidler, Cores of Exact Games, I, Journal of Mathematical Analysis and Applications, 40, 214-225, 1972.
- D. Schmeidler, Integral Representation without Additivity, Proceedings of the American Mathematical Society, 97, 255-261, 1986.
- P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman and Hall, London, 1991. Università Bocconi