Academia.eduAcademia.edu

Outline

Ergodic theorems for lower probabilities

2016, Proceedings of the American Mathematical Society

https://doi.org/10.1090/PROC/13086

Abstract

We establish an Ergodic Theorem for lower probabilities, a generalization of standard probabilities widely used in applications. As a byproduct, we provide a version for lower probabilities of the Strong Law of Large Numbers.

References (22)

  1. C. D. Aliprantis and K. Border, Infinite Dimensional Analysis, 3rd ed., Springer, New York, 2006.
  2. J. O. Berger, Robust Bayesian analysis: sensitivity to the prior, Journal of Statistical Plan- ning and Inference, 25, 303-328, 1990.
  3. P. Billingsley, Probability and Measure, 3rd ed., John Wiley & Sons, New York, 1995.
  4. S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci, and L. Montrucchio, Signed Integral Rep- resentations of Comonotonic Additive Functionals, Journal of Mathematical Analysis and Applications, 385, 895-912, 2012.
  5. S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci, and L. Montrucchio, Choquet Integration on Riesz Spaces and Dual Comonotonicity, Transactions of the American Mathematical Society, forthcoming.
  6. S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci, and L. Montrucchio, Ambiguity and Robust Statistics, Journal of Economic Theory, 974-1049, 2013.
  7. F. Delbaen, Convex Games and Extreme Points, Journal of Mathematical Analysis and Applications, 45, 210-233, 1974.
  8. Y. N. Dowker, Invariant Measure and the Ergodic Theorems, Duke Mathematical Journal, 4, 1051-1061, 1947.
  9. Y. N. Dowker, Finite and σ-Finite Invariant Measures, Annals of Mathematics, 4, 595-608, 1951.
  10. R. M. Dudley, Real Analysis and Probability, 2nd ed., Cambridge University Press, Cam- bridge, 2002.
  11. N. Dunford and J. T. Schwartz, Linear Operators; Part I: General Theory, Wiley, New York, 1958.
  12. E. B. Dynkin, Sufficient Statistics and Extreme Points, The Annals of Probability, 6, 705-730, 1978.
  13. R. M. Gray, Probability, Random Processes, and Ergodic Properties, 2nd ed., Springer, New York, 2009.
  14. R. M. Gray and J. C. Kieffer, Asymptotically Mean Stationary Measures, The Annals of Probability, 8, 962-973, 1980.
  15. F. Maccheroni and M. Marinacci, A Strong Law of Large Numbers for Capacities, The Annals of Probability, 33, 1171-1178, 2005.
  16. M. Marinacci, Limit Laws for Non-additive Probabilities and Their Frequentist Interpretation, Journal of Economic Theory, 84, 145-195, 1999.
  17. M. Marinacci and L. Montrucchio, Introduction to the Mathematics of Ambiguity, in Uncer- tainty in Economic Theory, Routledge, New York, 2004.
  18. R. R. Phelps, Lectures on Choquet's Theorem, 2nd ed., Springer, 2001.
  19. G. Shafer, Belief functions and parametric models, Journal of the Royal Statistical Society: Series B, 44, 322-352, 1982.
  20. D. Schmeidler, Cores of Exact Games, I, Journal of Mathematical Analysis and Applications, 40, 214-225, 1972.
  21. D. Schmeidler, Integral Representation without Additivity, Proceedings of the American Mathematical Society, 97, 255-261, 1986.
  22. P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman and Hall, London, 1991. Università Bocconi