On modulated ergodic theorems
2017, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.1709.05322Abstract
Let T be a weakly almost periodic (WAP) linear operator on a Banach space X. A sequence of scalars (a n ) n≥1 modulates T on Y ⊂ X if 1 n n k=1 a k T k x converges in norm for every x ∈ Y . We obtain a sufficient condition for (a n ) to modulate every WAP operator on the space of its flight vectors, a necessary and sufficient condition for (weakly) modulating every WAP operator T on the space of its (weakly) stable vectors, and sufficient conditions for modulating every contraction on a Hilbert space on the space of its weakly stable vectors. We study as an example modulation by the modified von Mangoldt function Λ ′ (n) := log n1 P (n) (where P = (p k ) k≥1 is the sequence of primes), and show that, as in the scalar case, convergence of the corresponding modulated averages is equivalent to convergence of the averages along the primes We then prove that for any contraction T on a Hilbert space H and x ∈ H, and also for every invertible T with sup n∈Z T n < ∞ on L r (Ω, µ) (1 < r < ∞) and f ∈ L r , the averages along the primes converge. 1 n n k=1 a k T k x, for every weakly almost periodic T and x ∈ X. Some general results are
References (46)
- M.A. Akcoglu and L. Sucheston, Dilations of positive contraction in L p spaces, Canadian Math. Bull. 20 (1977), 285-292.
- F. Albiac and N. Kalton, Topics in Banach Space Theory, second edition, Springer Graduate Texts in Mathematics 233, Springer, Switzerland, 2016.
- T. Apostol, Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer, New York Berlin Heidelberg, 1976.
- I. Assani, On the punctual and local ergodic theorem for nonpositive power-bounded operators on L p C [0, 1], 1 < p < ∞, Proc. Amer. Math. Soc. 96 (1986), 306-310.
- D. Berend, M. Lin, J. Rosenblatt and A. Tempelman, Modulated and subsequential ergodic theorems in Hilbert and Banach spaces, Ergodic Th. Dyn. Sys. 22 (2002), 1653-1665.
- V. Bergelson, A. Del Junco, M. Lemańczyk and J. Rosenblatt, Rigidity and non-recurrence along sequences, Erg. Theory Dynam. Systems 34 (2014), 1464-1502.
- J. Bourgain, An approach to pointwise ergodic theorems, Springer Lecture Notes in Math. 1317 (1988), 204-223.
- J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Publ. I.H.E.S. 169 (1989), 5-45.
- D. C ¸ömez, M. Lin and J. Olsen, Weighted ergodic theorems for mean ergodic L 1 contractions, Trans. Amer. Math. Soc. 350 (1998), 101-117.
- C. Cuny, T. Eisner and B. Farkas, Wiener's lemma along primes and other subsequences, preprint, available at https://arxiv.org/abs/1701.00101v4.
- C. Cuny and M. Weber, Ergodic theorems with arithmetical weights, Israel J. Math. 217 (2017), 139-180.
- H. Davenport, Multiplicative Number Theory, 2nd edition, Graduate Texts in Mathematics 74, Springer, Berlin Heidelberg, 1980.
- T. Eisner, B. Farkas, M. Haase and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Springer Cham, Heidelberg -New York, 2015.
- T. Eisner and S. Grivaux, Hilbertian Jamison sequences and rigid dynamical systems, J. Funct. Anal. 261 (2011), 2013-2052.
- H. El Abdalaoui, J. Kulaga-Przymus, M. Lemańczyk and T. de la Rue, The Chowla and the Sarnak conjectures from ergodic theory point of view, Discrete Contin. Dyn. Syst. 37 (2017), 2899-2944 (available at https://arxiv.org/abs/1410.1673).
- A.F.M. ter Elst and V. Müller, A van der Corput-type lemma for power bounded operators, Math. Z. 285 (2017), 143-158.
- N. Frantzikinakis, B. Host and B. Kra, Multiple recurrence and convergence for sequences related to the prime numbers, J. Reine Angew. Math. 611 (2007), 131-144.
- T. Gillespie, Logarithms of L p translations, Indiana Univ. Math. J. 24 (1975), 1037-1045.
- T. Gillespie, A spectral theorem for L p translations, J. London Math. Soc. (2) 11 (1975), 499-508.
- T. Gillespie, Power-bounded invertible operators and invertible isometries on L p spaces, in Operator semigroups meet complex analysis, harmonic analysis and mathematical physics, Operator Theory Adv. Appl. 250, pp. 241-252, Birkhäuser, Basel, 2015.
- J. Glück, On the peripheral spectrum of positive operators, Positivity 20 (2016), 307-336.
- L. Jones and M. Lin, Ergodic theorems of weak mixing type, Proc. Amer. Math. Soc. 57 (1976), 50-52.
- L. Jones and M. Lin, Unimodular eigenvalues and weak mixing, J. Funct. Anal. 35 (1980), 42-48.
- R. Jones, J. Olsen and M. Wierdl, Subsequence ergodic theorems for L p contractions, Trans. Amer. Math. Soc. 331 (1992), 837-850.
- J. P. Kahane, Sur les coefficients de Fourier-Bohr, Studia Math. 21 (1961), 103-106.
- C.H. Kan, Ergodic properties of Lamperti operators, Canadian J. Math. 30 (1978), 1206-1214.
- U. Krengel, Ergodic Theorems, De Gruyter, Berlin, 1985.
- J. Lamperti, On the isometries of certain function spaces, Pacific J. Math 8 (1958), 459-466.
- M. Lin, J. Olsen and A. Tempelman, On modulated ergodic theorems for Dunford-Schwartz opera- tors, Illinois J. Math. 43 (1999), 542-567.
- H. Lotz, Über das Spektrum positiver Operatoren, Math. Z. 108 (1968), 15-32.
- A. Michal, R. Davis and M. Wyman, Polygenic functions in general analysis, Ann. Scuola Norm. Super. Pisa (2) 9 (1940), 97-107.
- M. Mirek, B. Trojan and P. Zorin-Kranich, Variational estimates for averages and truncated singular integrals along the prime numbers, Trans. Amer. Math. Soc. 369 (2017), 5403-5423.
- V. Müller and Y. Tomilov, Quasisimilarity of power bounded operators and Blum-Hanson property, J. Funct. Anal. 246 (2007), 385-399.
- R. Nair, On polynomials in primes and J. Bourgain's circle method approach to ergodic theorems, Ergodic Th. Dyn. Syst. 11 (1991), 485-499.
- R. Nair, On polynomials in primes and J. Bourgain's circle method approach to ergodic theorems II, Studia Math. 105 (1993), 207-233.
- K. Prachar, Primzahlverteilung, Grundlehren Math. Wiss. vol. 91, Springer, Berlin Göttingen Hei- delberg, 1957.
- G. Rhin, Sur la répartition modulo 1 des suites f (p), Acta Arith. 23 (1973), 217-248.
- J. Rosenblatt, Norm convergence in ergodic theory and behavior of Fourier transforms, Canad. J. Math. 46 (1994), 184-199.
- H.H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin Heidelberg New York, 1974.
- B.Sz-Nagy, On uniformly bounded linear transformations in Hilbert space, Acta Sci. Math. (Szeged) 11 (1947), 152-157.
- A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, second edition, Wiley and sons, New York, 1980.
- A. Walfisz, Zur additiven Zahlentheorie, II, Mathematische Zeitschrift 40 (1936), 592-607.
- M. Wierdl, Pointwise ergodic theorem along the prime numbers, Israel J. Math. 64 (1988), 315-336.
- M. Wierdl, Almost everywhere convergence and recurrence along subsequences in ergodic theory, Ph.D. Thesis, 186 p., Ohio State University, 1989.
- P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics 25, Cambridge University Press, New York, 1991.
- P. Zorin-Kranich, Variation estimates for averages along the primes and polynomials, J. Funct. Anal. 268 (2015), 210-238.