A Proof of Liggett's Version of the Subadditive Ergodic Theorem
1988, Proceedings of the American Mathematical Society
Abstract
Using a method developed by Y. Katznelson and B. Weiss we give a proof of Liggett's improved version of the subadditive ergodic theorem.
Key takeaways
AI
AI
- Liggett's improved theorem extends Kingman's original subadditive ergodic theorem with specific distribution conditions.
- The proof relies on a lemma crucial for establishing the existence of limits in random variables' sequences.
- The paper emphasizes the ergodic theory terminology to articulate Liggett's results clearly.
- The method of proof is inspired by techniques from Katznelson and Weiss, demonstrating their versatility.
- The study asserts that the conditions for stationarity significantly influence the theorem's applications.
References (3)
- Y. Katznelson and B. Weiss, A simple proof of some ergodic theorems, Israel J. Math. 42 (1982), 291-296.
- J. F. C. Kingman, Subadditive ergodic theory, Ann. Probab. 1 (1973), 883-909.
- T. M. Liggett, An improved subadditive ergodic theorem, Ann. Probab. 13 (1985), 1279-1285. department of probability and statistics, michigan state university, East Lansing, Michigan 48824