Academia.eduAcademia.edu

Outline

Derivations of abelian Lie algebra extensions

2019

https://doi.org/10.1285/I15900932V39N2P71

Abstract

Let $ 0 \rightarrow A\rightarrow L {\rightarrow} B \rightarrow 0 $ be an abelian extension of Lie algebras. In this paper, we construct certain exact sequences which relate derivations with the Lie algebra cohomology group $ H^{2}(B,A) $, and apply them to study extending derivations of $ A $ and lifting derivations of $ B $ to certain derivations of $ L $.

References (17)

  1. V. G. Bardakov and M. Singh: Extensions and automorphisms of Lie algebras, J. Algebra Appl. 16 (2017), no. 9, 1750162, 15 pp.
  2. P. Batten: Multipliers and covers of Lie algebras, Thesis (Ph.D.)-North Carolina State University. ProQuest LLC, Ann Arbor, MI, 1993, 79 pp.
  3. C. Chevalley and S. Eilenberg: Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 16 (1984), 85-124.
  4. S. Eilenberg and S. MacLane: Cohomology theory in abstract groups. I, Ann. of Math., 48 (1947), no. 1, 51-78.
  5. S. Eilenberg and S. MacLane: Cohomology theory in abstract groups. II, Ann. of Math., 48 (1947), no. 2, 326-341.
  6. M. Eshrati, M. R. R Moghaddam, and F. Saeedi: Some properties on isoclinism in n-Lie algebras, Comm. Algebra 44 (2016), no. 7, 3005-3019.
  7. J. Giraud: Cohomologie non abelienne, Grundlehren 179, Springer-Verlag, Berlin etc., 1971.
  8. P. J. Hilton and U. Stammbach: A Course in Homological Algebra, second edition. Graduate Texts in Mathematics, 4. Springer-Verlag, New York 1997.
  9. G. P. Hochschild, and J. P. Serre:, Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110-134.
  10. S. MacLane: Cohomology theory in abstract groups. III. Operator Homomorphisms of Kernels, Ann. of Math. 50 (1949), no. 3, 736-761.
  11. I. Passi, M. Singh, and M. K. Yadav: Automorphisms of abelian group extensions, J. Algebra 324 (2010), no. 4, 820-830.
  12. A. Salemkar, V. Alamian, and H. Mohammadzadeh: Some properties of the Schur multiplier and converse of Lie algebras, Comm. Algebra 36 (2008), no. 2, 697-707.
  13. F. Saeedi and S. Sheikh-Mohseni:A Characterization of stem algebras in terms of central derivations, Algebr. Represent. Theory 20 (2017), no. 5, 1143-1150.
  14. S. Sheik-Mohseni, F. Saeedi, and M. Badrakhani: On special subalgebras of deriva- tions of Lie algebras, Asian-Eur. J. Math. 8 (2015), no. 2, 1550032, 12 pp.
  15. F. Saeedi and S. Sheikh-Mohseni: Derivation subalgebras of Lie algebras, Note Mat. 38 (2018), no. 2, 105-115.
  16. S. Togo: Derivations of Lie algebra, J. Sci. Hiroshima Univ. Ser. A-I Math. 28 (1964), 133-158.
  17. C. Wells: Automorphisms of group extensions, Trans. Amer. Math. Soc. 155 (1971), 189-194.