Academia.eduAcademia.edu

Outline

Abelian extensions and crossed modules of Hom-Lie algebras

Journal of Pure and Applied Algebra

https://doi.org/10.1016/J.JPAA.2019.06.018

Abstract

In this paper we study the low dimensional cohomology groups of Hom-Lie algebras and their relation with derivations, abelian extensions and crossed modules. On one hand, we introduce the notion of α-abelian extensions and we obtain a five term exact sequence in cohomology. On the other hand, we introduce crossed modules of Hom-Lie algebras showing their equivalence with cat 1-Hom-Lie algebras, and we introduce α-crossed modules to have a better understanding of the third cohomology group.

References (27)

  1. J. M. Beck, Triples, algebras and cohomology, Reprints in Theory and Applications of Cat- egories 2 (2003), 1-59, Ph.D. thesis, Columbia University, 1967.
  2. F. Borceux and D. Bourn, Mal'cev, protomodular, homological and semi-abelian categories, Math. Appl., vol. 566, Kluwer Acad. Publ., 2004.
  3. F. Borceux, G. Janelidze, and G. M. Kelly, Internal object actions, Comment. Math. Univ. Carolin. 46 (2005), no. 2, 235-255.
  4. S. Caenepeel and I. Goyvaerts, Monoidal Hom-Hopf algebras, Comm. Algebra 39 (2011), no. 6, 2216-2240.
  5. J. M. Casas, M. A. Insua, and N. Pacheco, On universal central extensions of Hom-Lie algebras, Hacet. J. Math. Stat. 44 (2015), no. 2, 277-288.
  6. J. M. Casas and T. Van der Linden, Universal central extensions in semi-abelian categories, Appl. Categ. Structures 22 (2014), no. 1, 253-268.
  7. A. S. Cigoli, J. R. A. Gray, and T. Van der Linden, Algebraically coherent categories, Theory Appl. Categ. 30 (2015), no. 54, 1864-1905.
  8. I. Goyvaerts and J. Vercruysse, A note on the categorification of Lie algebras, Lie theory and its applications in physics, Springer Proc. Math. Stat., vol. 36, Springer, Tokyo, 2013, pp. 541-550.
  9. J. R. A. Gray, Algebraic exponentiation in general categories, Appl. Categ. Structures 20 (2012), 543-567.
  10. J. T. Hartwig, D. Larsson, and S. D. Silvestrov, Deformations of Lie algebras using σ- derivations, J. Algebra 295 (2006), no. 2, 314-361.
  11. P. J. Hilton and U. Stammbach, A course in homological algebra, second ed., Graduate Texts in Mathematics, vol. 4, Springer-Verlag, New York, 1997.
  12. S. A. Huq, Commutator, nilpotency, and solvability in categories, Quart. J. Math. Oxford Ser. (2) 19 (1968), 363-389.
  13. G. Janelidze, Internal crossed modules, Georgian Math. J. 10 (2003), no. 1, 99-114.
  14. G. Janelidze, L. Márki, and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra 168 (2002), no. 2-3, 367-386, Category theory 1999 (Coimbra).
  15. C. Kassel and J.-L. Loday, Extensions centrales d'algèbres de Lie, Ann. Inst. Fourier (Gren- oble) 32 (1982), no. 4, 119-142.
  16. J.-L. Loday, Spaces with finitely many nontrivial homotopy groups, J. Pure Appl. Algebra 24 (1982), no. 2, 179-202.
  17. A. Makhlouf and S. Silvestrov, Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras, Forum Math. 22 (2010), no. 4, 715-739.
  18. A. Makhlouf and S. D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008), no. 2, 51-64.
  19. N. Martins-Ferreira and T. Van der Linden, A note on the "Smith is Huq" condition, Appl. Categ. Structures 20 (2012), no. 2, 175-187.
  20. T. Porter, Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinburgh Math. Soc. (2) 30 (1987), no. 3, 373-381.
  21. J. G. Ratcliffe, Crossed extensions, Trans. Amer. Math. Soc. 257 (1980), no. 1, 73-89. MR 549155
  22. J.-P. Serre, Lie algebras and Lie groups, Lecture Notes in Mathematics, vol. 1500, Springer- Verlag, Berlin, 2006, 1964 lectures given at Harvard University, Corrected fifth printing of the second (1992) edition.
  23. Y. Sheng, Representations of hom-Lie algebras, Algebr. Represent. Theory 15 (2012), no. 6, 1081-1098.
  24. Y. Sheng and D. Chen, Hom-Lie 2-algebras, J. Algebra 376 (2013), 174-195.
  25. C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Math- ematics, vol. 38, Cambridge University Press, Cambridge, 1994.
  26. D. Yau, Enveloping algebras of Hom-Lie algebras, J. Gen. Lie Theory Appl. 2 (2008), no. 2, 95-108.
  27. D. Yau, Hom-algebras and homology, J. Lie Theory 19 (2009), no. 2, 409-421. (José-Manuel Casas) Departamento de Matemática Aplicada I, Universidade de Vigo, 36005 Pontevedra, Spain E-mail address: jmcasas@uvigo.es