Abelian extensions and crossed modules of Hom-Lie algebras
Journal of Pure and Applied Algebra
https://doi.org/10.1016/J.JPAA.2019.06.018Abstract
In this paper we study the low dimensional cohomology groups of Hom-Lie algebras and their relation with derivations, abelian extensions and crossed modules. On one hand, we introduce the notion of α-abelian extensions and we obtain a five term exact sequence in cohomology. On the other hand, we introduce crossed modules of Hom-Lie algebras showing their equivalence with cat 1-Hom-Lie algebras, and we introduce α-crossed modules to have a better understanding of the third cohomology group.
References (27)
- J. M. Beck, Triples, algebras and cohomology, Reprints in Theory and Applications of Cat- egories 2 (2003), 1-59, Ph.D. thesis, Columbia University, 1967.
- F. Borceux and D. Bourn, Mal'cev, protomodular, homological and semi-abelian categories, Math. Appl., vol. 566, Kluwer Acad. Publ., 2004.
- F. Borceux, G. Janelidze, and G. M. Kelly, Internal object actions, Comment. Math. Univ. Carolin. 46 (2005), no. 2, 235-255.
- S. Caenepeel and I. Goyvaerts, Monoidal Hom-Hopf algebras, Comm. Algebra 39 (2011), no. 6, 2216-2240.
- J. M. Casas, M. A. Insua, and N. Pacheco, On universal central extensions of Hom-Lie algebras, Hacet. J. Math. Stat. 44 (2015), no. 2, 277-288.
- J. M. Casas and T. Van der Linden, Universal central extensions in semi-abelian categories, Appl. Categ. Structures 22 (2014), no. 1, 253-268.
- A. S. Cigoli, J. R. A. Gray, and T. Van der Linden, Algebraically coherent categories, Theory Appl. Categ. 30 (2015), no. 54, 1864-1905.
- I. Goyvaerts and J. Vercruysse, A note on the categorification of Lie algebras, Lie theory and its applications in physics, Springer Proc. Math. Stat., vol. 36, Springer, Tokyo, 2013, pp. 541-550.
- J. R. A. Gray, Algebraic exponentiation in general categories, Appl. Categ. Structures 20 (2012), 543-567.
- J. T. Hartwig, D. Larsson, and S. D. Silvestrov, Deformations of Lie algebras using σ- derivations, J. Algebra 295 (2006), no. 2, 314-361.
- P. J. Hilton and U. Stammbach, A course in homological algebra, second ed., Graduate Texts in Mathematics, vol. 4, Springer-Verlag, New York, 1997.
- S. A. Huq, Commutator, nilpotency, and solvability in categories, Quart. J. Math. Oxford Ser. (2) 19 (1968), 363-389.
- G. Janelidze, Internal crossed modules, Georgian Math. J. 10 (2003), no. 1, 99-114.
- G. Janelidze, L. Márki, and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra 168 (2002), no. 2-3, 367-386, Category theory 1999 (Coimbra).
- C. Kassel and J.-L. Loday, Extensions centrales d'algèbres de Lie, Ann. Inst. Fourier (Gren- oble) 32 (1982), no. 4, 119-142.
- J.-L. Loday, Spaces with finitely many nontrivial homotopy groups, J. Pure Appl. Algebra 24 (1982), no. 2, 179-202.
- A. Makhlouf and S. Silvestrov, Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras, Forum Math. 22 (2010), no. 4, 715-739.
- A. Makhlouf and S. D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008), no. 2, 51-64.
- N. Martins-Ferreira and T. Van der Linden, A note on the "Smith is Huq" condition, Appl. Categ. Structures 20 (2012), no. 2, 175-187.
- T. Porter, Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinburgh Math. Soc. (2) 30 (1987), no. 3, 373-381.
- J. G. Ratcliffe, Crossed extensions, Trans. Amer. Math. Soc. 257 (1980), no. 1, 73-89. MR 549155
- J.-P. Serre, Lie algebras and Lie groups, Lecture Notes in Mathematics, vol. 1500, Springer- Verlag, Berlin, 2006, 1964 lectures given at Harvard University, Corrected fifth printing of the second (1992) edition.
- Y. Sheng, Representations of hom-Lie algebras, Algebr. Represent. Theory 15 (2012), no. 6, 1081-1098.
- Y. Sheng and D. Chen, Hom-Lie 2-algebras, J. Algebra 376 (2013), 174-195.
- C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Math- ematics, vol. 38, Cambridge University Press, Cambridge, 1994.
- D. Yau, Enveloping algebras of Hom-Lie algebras, J. Gen. Lie Theory Appl. 2 (2008), no. 2, 95-108.
- D. Yau, Hom-algebras and homology, J. Lie Theory 19 (2009), no. 2, 409-421. (José-Manuel Casas) Departamento de Matemática Aplicada I, Universidade de Vigo, 36005 Pontevedra, Spain E-mail address: jmcasas@uvigo.es