Algebra of derivations of Lie algebras
2001, Linear Algebra and its Applications
https://doi.org/10.1016/S0024-3795(01)00247-6Abstract
We show a method to determine the space of derivations of any Lie algebra, and in particular we apply this method to a special class of Lie algebras, those nilpotent with low nilindex. Most calculations have been supported by the software Mathematica 3.0. (L.M. Camacho), jrgomez@cica.es (J.R. Gómez), rnavar-ro@unex.es (R.M. Navarro). 0024-3795/01/$ -see front matter 2001 Elsevier Science Inc. All rights reserved. PII: S 0 0 2 4 -3 7 9 5 ( 0 0 ) 0 0 2 4 7 -6
References (13)
- J. Alev, F. Dumas, Sur le corps des fractions de certaines algèbres quantiques, J. Algebra 170 (1994) 229-265.
- J. Alev, A. Ooms, M. Van der Bergh, A class of counter examples to the Gel'fand-Kirillov conjeture, Trans. Am. Math. Soc. 348 (1996) 1709-1715.
- J.M. Cabezas, Una generalización de las álgebras de Lie filiformes, Ph.D. thesis, Universidad de Sevilla, 1996.
- J.M. Cabezas, J.R. Gómez, Las álgebras de Lie (n -3)-filiformes como extensiones por derivaci- ones, Extracta Mathematicae 13 (3) (1998) 383-391.
- J.M. Cabezas, J.R. Gómez, A. Jiménez-Merchán, Family of p-filiform Lie algebras, in: Algebra and Operator Theory, Kluwer Academic Publishers, Dordrecht, 1998, pp. 93-102.
- L.M. Camacho, J.R. Gómez, R.M. Navarro, I. Rodríguez, Effective computation of algebra of deriva- tions of Lie algebras, in: Computer Algebra in Scientific Computing, CASC 2000, Springer, Berlin, 2000, pp. 101-113.
- J.R. Gómez, R.M. Navarro, Espacios de derivaciones de álgebras de Lie con Mathematica, in: Proceedings of the IV Encuentro de Álgebra Computacional y Aplicaciones (EACA'98), Sigüenza, 1998.
- M. Goze, Y. Khakimdjanov, Nilpotent Lie Algebras, Kluwer Academic Publishers, Dordrecht, 1996.
- J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Math- ematics, vol. 9, Springer, Berlin, 1987.
- J.L. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France 78 (1950) 65-127.
- D.H. Sattinger, O.L. Weaver, Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics, Springer, New York, 1986.
- J-P. Serre, Lie Algebras and Lie Groups, Lectures Notes in Mathematics, Springer, Berlin, 1992.
- V.S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Graduate Texts in Mathe- matics, vol. 102, Springer, Berlin, 1984.