Academia.eduAcademia.edu

Outline

Algebra of derivations of Lie algebras

2001, Linear Algebra and its Applications

https://doi.org/10.1016/S0024-3795(01)00247-6

Abstract

We show a method to determine the space of derivations of any Lie algebra, and in particular we apply this method to a special class of Lie algebras, those nilpotent with low nilindex. Most calculations have been supported by the software Mathematica 3.0. (L.M. Camacho), jrgomez@cica.es (J.R. Gómez), rnavar-ro@unex.es (R.M. Navarro). 0024-3795/01/$ -see front matter 2001 Elsevier Science Inc. All rights reserved. PII: S 0 0 2 4 -3 7 9 5 ( 0 0 ) 0 0 2 4 7 -6

References (13)

  1. J. Alev, F. Dumas, Sur le corps des fractions de certaines algèbres quantiques, J. Algebra 170 (1994) 229-265.
  2. J. Alev, A. Ooms, M. Van der Bergh, A class of counter examples to the Gel'fand-Kirillov conjeture, Trans. Am. Math. Soc. 348 (1996) 1709-1715.
  3. J.M. Cabezas, Una generalización de las álgebras de Lie filiformes, Ph.D. thesis, Universidad de Sevilla, 1996.
  4. J.M. Cabezas, J.R. Gómez, Las álgebras de Lie (n -3)-filiformes como extensiones por derivaci- ones, Extracta Mathematicae 13 (3) (1998) 383-391.
  5. J.M. Cabezas, J.R. Gómez, A. Jiménez-Merchán, Family of p-filiform Lie algebras, in: Algebra and Operator Theory, Kluwer Academic Publishers, Dordrecht, 1998, pp. 93-102.
  6. L.M. Camacho, J.R. Gómez, R.M. Navarro, I. Rodríguez, Effective computation of algebra of deriva- tions of Lie algebras, in: Computer Algebra in Scientific Computing, CASC 2000, Springer, Berlin, 2000, pp. 101-113.
  7. J.R. Gómez, R.M. Navarro, Espacios de derivaciones de álgebras de Lie con Mathematica, in: Proceedings of the IV Encuentro de Álgebra Computacional y Aplicaciones (EACA'98), Sigüenza, 1998.
  8. M. Goze, Y. Khakimdjanov, Nilpotent Lie Algebras, Kluwer Academic Publishers, Dordrecht, 1996.
  9. J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Math- ematics, vol. 9, Springer, Berlin, 1987.
  10. J.L. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France 78 (1950) 65-127.
  11. D.H. Sattinger, O.L. Weaver, Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics, Springer, New York, 1986.
  12. J-P. Serre, Lie Algebras and Lie Groups, Lectures Notes in Mathematics, Springer, Berlin, 1992.
  13. V.S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Graduate Texts in Mathe- matics, vol. 102, Springer, Berlin, 1984.