On 3-Lie algebras with a derivation
2021
Abstract
In this paper, we study 3-Lie algebras with derivations. We call the pair consisting of a 3-Lie algebra and a distinguished derivation by the 3-LieDer pair. We define a cohomology theory for 3-LieDer pair with coefficients in a representation. We study central extensions of a 3-LieDer pair and show that central extensions are classified by the second cohomology of the 3-LieDer pair with coefficients in the trivial representation. We generalize Gerstenhaber’s formal deformation theory to 3-LieDer pairs in which we deform both the 3-Lie bracket and the distinguished derivation.
References (26)
- S.A. Amitsur, Derivations in simple rings, Proc. Lond. Math. Soc. (3) (1957)
- S.A. Amitsur, Extension of derivations to central simple algebras, Commun. Algebra (1982).
- V. Ayala, E. Kizil, I. de Azevedo Tribuzy, On an algorithm for finding derivations of Lie algebras, Proyecciones 31 (2012) 81-90.
- J. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple M 2-branes, Phys. Rev. D 77 (6) (2008) 065008 (6 pages).
- J. Bagger, N. Lambert, Comments on multiple M 2-branes, J. High Energy Phys. (2) (2008) 105 (15 pages).
- C. Bai, L. Guo, Y. Sheng, Bialgebras, classical Yang-Baxter equation and Manin triples for 3-Lie algebras, Adv. Theor. Math. Phys. 23(2019) 27-74.
- R. Bai, W. Wu, Y. Li, Z. Li, Module extensions of 3-Lie algebras, Linear Multilinear A. 60 (4) (2012) 433-447.
- V.G. Bardakov, M. Singh, Extensions and automorphisms of Lie algebras, J. Algebra Appl. 16 (2017), 15 pp..
- V. Coll, M. Gerstenhaber, A. Giaquinto, An explicit deformation formula with non- commuting derivations, Ring theory 1989 (Ramat Gan and Jerusalem, 1988/1989) 396-403, Israel Math. Conf. Proc., 1, Weizmann, Jerusalem, 1989.
- A. Das, A. Mandal, Extensions, deformations and categorifications of AssDer pairs, preprint (2020), arXiv.2002.11415.
- A. Das, Leibniz algebras with derivations, J. Homotopy Relat. Struct., 16 (2021) 245-274..
- M. Doubek, T. Lada, Homotopy derivations, J. Homotopy Relat. Struct. 11 (2016) 599-630.
- C. Du, C. Bai, L. Guo, 3-Lie bialgebras and 3-Lie classical Yang-Baxter equations in low dimensions, Linear Multilinear A. 66(8) (2018) 1633-1658.
- M. Gerstenhaber, The cohomology structure of an associative ring, Ann. Math. 78, (1963) 267-288.
- M. Gerstenhaber, On the deformation of rings and algebras, Ann. Math. (2) 79 (1964) 59-103.
- V. Filippov, n-Lie algebras, Sib. Mat. Zh. 26 (1985) 126-140.
- S. Kasymov, On a theory of n-Lie algebras, Algebra Log. 26 (1987) 277-297.
- J. Liu, A. Makhlouf, Y. Sheng, A new approach to representations of 3-Lie algebras and Abelian extensions, Algebr Represent Theor (20)(2017) 1415-1431.
- A. Magid, Lectures on differential Galois theory, University Lecture Series, 7. Amer- ican Mathematical Society, Providence, RI, 1994.
- M. Rotkiewicz, Cohomology ring of n-Lie algebras, Extr. Math. 20 (2005), 219-232.
- Y. Sheng, R. Tang, Symplectic, product and complex structures on 3-Lie algebras, J. Algebra 508 (2018) 256-300.
- L. Takhtajan, Higher order analog of Chevalley-Eilenberg complex and deformation theory of n-algebras, St. Petersburg Math. J. 6 (1995) 429-438.
- R. Tang, Y. Frégier, Y. Sheng, Cohomologies of a Lie algebra with a derivation and applications, J. Algebra, 534 (2019) 65-99.
- T. Voronov, Higher derived brackets and homotopy algebras, J. Pure Appl. Algebra 202 (2005) 133-153.
- S. Xu, Cohomology, derivations and abelian extensions of 3-Lie algebras, J. Algebra Appl. 18(7) (2019) 1950130 (26 pages).
- T. Zhang, Cohomology and deformations of 3-Lie colour algebras, Linear and Multi- linear Algebra. 63 (4) (2015) 651-671.