Academia.eduAcademia.edu

Outline

On 3-Lie algebras with a derivation

2021

Abstract

In this paper, we study 3-Lie algebras with derivations. We call the pair consisting of a 3-Lie algebra and a distinguished derivation by the 3-LieDer pair. We define a cohomology theory for 3-LieDer pair with coefficients in a representation. We study central extensions of a 3-LieDer pair and show that central extensions are classified by the second cohomology of the 3-LieDer pair with coefficients in the trivial representation. We generalize Gerstenhaber’s formal deformation theory to 3-LieDer pairs in which we deform both the 3-Lie bracket and the distinguished derivation.

References (26)

  1. S.A. Amitsur, Derivations in simple rings, Proc. Lond. Math. Soc. (3) (1957)
  2. S.A. Amitsur, Extension of derivations to central simple algebras, Commun. Algebra (1982).
  3. V. Ayala, E. Kizil, I. de Azevedo Tribuzy, On an algorithm for finding derivations of Lie algebras, Proyecciones 31 (2012) 81-90.
  4. J. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple M 2-branes, Phys. Rev. D 77 (6) (2008) 065008 (6 pages).
  5. J. Bagger, N. Lambert, Comments on multiple M 2-branes, J. High Energy Phys. (2) (2008) 105 (15 pages).
  6. C. Bai, L. Guo, Y. Sheng, Bialgebras, classical Yang-Baxter equation and Manin triples for 3-Lie algebras, Adv. Theor. Math. Phys. 23(2019) 27-74.
  7. R. Bai, W. Wu, Y. Li, Z. Li, Module extensions of 3-Lie algebras, Linear Multilinear A. 60 (4) (2012) 433-447.
  8. V.G. Bardakov, M. Singh, Extensions and automorphisms of Lie algebras, J. Algebra Appl. 16 (2017), 15 pp..
  9. V. Coll, M. Gerstenhaber, A. Giaquinto, An explicit deformation formula with non- commuting derivations, Ring theory 1989 (Ramat Gan and Jerusalem, 1988/1989) 396-403, Israel Math. Conf. Proc., 1, Weizmann, Jerusalem, 1989.
  10. A. Das, A. Mandal, Extensions, deformations and categorifications of AssDer pairs, preprint (2020), arXiv.2002.11415.
  11. A. Das, Leibniz algebras with derivations, J. Homotopy Relat. Struct., 16 (2021) 245-274..
  12. M. Doubek, T. Lada, Homotopy derivations, J. Homotopy Relat. Struct. 11 (2016) 599-630.
  13. C. Du, C. Bai, L. Guo, 3-Lie bialgebras and 3-Lie classical Yang-Baxter equations in low dimensions, Linear Multilinear A. 66(8) (2018) 1633-1658.
  14. M. Gerstenhaber, The cohomology structure of an associative ring, Ann. Math. 78, (1963) 267-288.
  15. M. Gerstenhaber, On the deformation of rings and algebras, Ann. Math. (2) 79 (1964) 59-103.
  16. V. Filippov, n-Lie algebras, Sib. Mat. Zh. 26 (1985) 126-140.
  17. S. Kasymov, On a theory of n-Lie algebras, Algebra Log. 26 (1987) 277-297.
  18. J. Liu, A. Makhlouf, Y. Sheng, A new approach to representations of 3-Lie algebras and Abelian extensions, Algebr Represent Theor (20)(2017) 1415-1431.
  19. A. Magid, Lectures on differential Galois theory, University Lecture Series, 7. Amer- ican Mathematical Society, Providence, RI, 1994.
  20. M. Rotkiewicz, Cohomology ring of n-Lie algebras, Extr. Math. 20 (2005), 219-232.
  21. Y. Sheng, R. Tang, Symplectic, product and complex structures on 3-Lie algebras, J. Algebra 508 (2018) 256-300.
  22. L. Takhtajan, Higher order analog of Chevalley-Eilenberg complex and deformation theory of n-algebras, St. Petersburg Math. J. 6 (1995) 429-438.
  23. R. Tang, Y. Frégier, Y. Sheng, Cohomologies of a Lie algebra with a derivation and applications, J. Algebra, 534 (2019) 65-99.
  24. T. Voronov, Higher derived brackets and homotopy algebras, J. Pure Appl. Algebra 202 (2005) 133-153.
  25. S. Xu, Cohomology, derivations and abelian extensions of 3-Lie algebras, J. Algebra Appl. 18(7) (2019) 1950130 (26 pages).
  26. T. Zhang, Cohomology and deformations of 3-Lie colour algebras, Linear and Multi- linear Algebra. 63 (4) (2015) 651-671.