On random almost periodic series and random ergodic theory
2006, Ergodic Theory and Dynamical Systems
https://doi.org/10.1017/S0143385705000660Abstract
In this paper we obtain different types of random ergodic theorems for dynamical systems or continuous semi-flows. These results recover and extend previous works on dynamical systems and are completely new in case of semi-flows. The proofs are based on uniform estimates on random almost periodic polynomials that we obtained recently [8] and on an improvement of a tool introduced by Talagrand [28] and further developed by Fernique [14]. In the course, we partially recover results of Marcus and Pisier [18] on almost sure uniform convergence of random almost periodic series. Let µ f be the spectral measure (on R d) of an L 2 function f associated to a representation of (R +) d by isometries (see §4 for more details). For a vector t := (t (1) ,. .. , t (d)) ∈ R d we write |t| = max{|t (1) |,. .. , |t (d) |}. We write t, s for the inner product in R d .
References (30)
- I. Assani. (1998). A weighted pointwise ergodic theorem, Ann. Inst. Poincaré Proba. Stat. 34, 139-150.
- I. Assani. (2003). Wiener-Wintner dynamical systems, Ergodic theory and dynamical sys- tems., 23 1637-1654.
- V. Bergelson, J. Boshernitzan, and J. Bourgain. (1994). Some results on nonlinear recur- rence, Journal d'Analyse Mathématique. 62, 29-46.
- F. Boukhari and M. Weber. (2002). Almost sure convergence of weighted series of contrac- tions, Illinois J. Math. 46, 1-21.
- G. Cohen and M. Lin. (2003). Laws of large numbers with rates and the one-sided ergodic Hilbert transform, Illinois Journal of Mathematic. 47, n • 4, 997-1031.
- G. Cohen and M. Lin, Extensions of the Menchoff-Rademacher theorem with applications to ergodic theory, to appear in Israel Journal of Mathematics.
- G. Cohen and C. Cuny (2005). On Billard's theorem for random Fourier series Bull. Pol. Acad. Sci. Math. 53 , no. 1, 39-53.
- G. Cohen and C. Cuny, On random almost periodic trigonometric polynomials and appli- cations to ergodic theory, to appear in Annals of Probability.
- C. Cuny. (2005). On randomly weighted one-sided ergodic Hilbert transforms, Ergodic Theory and Dynamical Systems. 25, 89-99 and 101-106.
- J. L. Doob. (1953). Stochastic Processes, John Wiley & sons, New York 1953.
- T. Downarowicz and A. Iwanik. (1988). Multiple recurrence for discrete time Markov pro- cesses II, Colloquium Mathematicum. 55, 311-316.
- S. Durand and D. Schneider. (2003). Random ergodic theorems and regularizing random weights, Ergodic Theory and Dynamical Systems. 23, 1059-1092.
- A. Fan and D. Schneider. (2003). Sur une inégalité de Littlewood-Salem (On a Littlewood- Salem inequality), Ann. Inst. H. Poincaré 2, 193-216.
- X. Fernique. (1996). Séries de Fourier aléatoires, C. R. Acad. Sci. Paris Sér. I, Math. 322, n • 5, 485-488.
- V. F. Gaposhkin. (1996). Lacunary series and independent functions, Russian Math. Sur- veys 21, no. 6, 1-82.
- G. A. Hunt. (1951). Random Fourier transforms, Trans. Amer. Math. Soc. 71, n • 1, 38-69.
- M.B. Marcus and G. Pisier. (1981). Random Fourier series with applications to harmonic analysis, Ann. Math. Studies, Princeton University Press, Princeton.
- M. B. Marcus and G. Pisier. (1984). Characterization of almost surely continuous p-stable random Fourier series and strongly stationary processes, Acta Math. 152, n • 3-4, 245-301.
- M. B. Marcus and G. Pisier. (1984). Some results on the continuity of stable processes and the domain of attraction of continuous stable processes, Ann. Inst. H. Poincaré Prob. Statist. 20, n • 2, 177-199.
- F. Móricz. (1976). Moment inequalities and the strong laws of large numbers, Z. Wahr. Verw. Gebiete 35, 299-314.
- B. Sz.-Nagy. (1974). Unitary dilations of Hilbert space operators and related topics. Regional Conference in Mathematics Series, no. 19, AMS, Providence, RI.
- B. Sz-Nagy and C. Foias. (1970). Harmonic analysis of operators on Hilbert space. Trans- lated from the French and revised North-Holland Publishing Co., Amsterdam-London;
- R. Nair and M. Weber. (2004). On random perturbations of some intersective sets, Inda- gationes Math. 15, no. 3, 373-381.
- S. Parrott. (1970). Unitary dilations for commuting contractions, Pacific Journal of Math- ematics. 34, 481-490.
- F. Riesz and B. Sz-Nagy. (1990). Functional analysis, Translated from the 2 nd French edition by L. F. Boron, Dover Publications inc., New York.
- J. Rosenblatt. (1988). Almost everywhere convergence of series, Mathematische Annalen. 280, 565-577.
- D. Schneider. (1997). Théorèmes ergodiques perturbés, Israel J. Math. 101 157-178.
- M. Talagrand. (1995). A borderline random Fourier series, Annals of Probability 23, n • 2, 776-785.
- M. Weber. (2000). Estimating random polynomials by means of metric entropy methods, Mathematical inequalities & Applications. 3, 443-457.
- A. Zygmund. (1968). Trigonometric Series, corrected 2nd ed., Cambridge University Press.