Academia.eduAcademia.edu

Outline

On random almost periodic series and random ergodic theory

2006, Ergodic Theory and Dynamical Systems

https://doi.org/10.1017/S0143385705000660

Abstract

In this paper we obtain different types of random ergodic theorems for dynamical systems or continuous semi-flows. These results recover and extend previous works on dynamical systems and are completely new in case of semi-flows. The proofs are based on uniform estimates on random almost periodic polynomials that we obtained recently [8] and on an improvement of a tool introduced by Talagrand [28] and further developed by Fernique [14]. In the course, we partially recover results of Marcus and Pisier [18] on almost sure uniform convergence of random almost periodic series. Let µ f be the spectral measure (on R d) of an L 2 function f associated to a representation of (R +) d by isometries (see §4 for more details). For a vector t := (t (1) ,. .. , t (d)) ∈ R d we write |t| = max{|t (1) |,. .. , |t (d) |}. We write t, s for the inner product in R d .

References (30)

  1. I. Assani. (1998). A weighted pointwise ergodic theorem, Ann. Inst. Poincaré Proba. Stat. 34, 139-150.
  2. I. Assani. (2003). Wiener-Wintner dynamical systems, Ergodic theory and dynamical sys- tems., 23 1637-1654.
  3. V. Bergelson, J. Boshernitzan, and J. Bourgain. (1994). Some results on nonlinear recur- rence, Journal d'Analyse Mathématique. 62, 29-46.
  4. F. Boukhari and M. Weber. (2002). Almost sure convergence of weighted series of contrac- tions, Illinois J. Math. 46, 1-21.
  5. G. Cohen and M. Lin. (2003). Laws of large numbers with rates and the one-sided ergodic Hilbert transform, Illinois Journal of Mathematic. 47, n • 4, 997-1031.
  6. G. Cohen and M. Lin, Extensions of the Menchoff-Rademacher theorem with applications to ergodic theory, to appear in Israel Journal of Mathematics.
  7. G. Cohen and C. Cuny (2005). On Billard's theorem for random Fourier series Bull. Pol. Acad. Sci. Math. 53 , no. 1, 39-53.
  8. G. Cohen and C. Cuny, On random almost periodic trigonometric polynomials and appli- cations to ergodic theory, to appear in Annals of Probability.
  9. C. Cuny. (2005). On randomly weighted one-sided ergodic Hilbert transforms, Ergodic Theory and Dynamical Systems. 25, 89-99 and 101-106.
  10. J. L. Doob. (1953). Stochastic Processes, John Wiley & sons, New York 1953.
  11. T. Downarowicz and A. Iwanik. (1988). Multiple recurrence for discrete time Markov pro- cesses II, Colloquium Mathematicum. 55, 311-316.
  12. S. Durand and D. Schneider. (2003). Random ergodic theorems and regularizing random weights, Ergodic Theory and Dynamical Systems. 23, 1059-1092.
  13. A. Fan and D. Schneider. (2003). Sur une inégalité de Littlewood-Salem (On a Littlewood- Salem inequality), Ann. Inst. H. Poincaré 2, 193-216.
  14. X. Fernique. (1996). Séries de Fourier aléatoires, C. R. Acad. Sci. Paris Sér. I, Math. 322, n • 5, 485-488.
  15. V. F. Gaposhkin. (1996). Lacunary series and independent functions, Russian Math. Sur- veys 21, no. 6, 1-82.
  16. G. A. Hunt. (1951). Random Fourier transforms, Trans. Amer. Math. Soc. 71, n • 1, 38-69.
  17. M.B. Marcus and G. Pisier. (1981). Random Fourier series with applications to harmonic analysis, Ann. Math. Studies, Princeton University Press, Princeton.
  18. M. B. Marcus and G. Pisier. (1984). Characterization of almost surely continuous p-stable random Fourier series and strongly stationary processes, Acta Math. 152, n • 3-4, 245-301.
  19. M. B. Marcus and G. Pisier. (1984). Some results on the continuity of stable processes and the domain of attraction of continuous stable processes, Ann. Inst. H. Poincaré Prob. Statist. 20, n • 2, 177-199.
  20. F. Móricz. (1976). Moment inequalities and the strong laws of large numbers, Z. Wahr. Verw. Gebiete 35, 299-314.
  21. B. Sz.-Nagy. (1974). Unitary dilations of Hilbert space operators and related topics. Regional Conference in Mathematics Series, no. 19, AMS, Providence, RI.
  22. B. Sz-Nagy and C. Foias. (1970). Harmonic analysis of operators on Hilbert space. Trans- lated from the French and revised North-Holland Publishing Co., Amsterdam-London;
  23. R. Nair and M. Weber. (2004). On random perturbations of some intersective sets, Inda- gationes Math. 15, no. 3, 373-381.
  24. S. Parrott. (1970). Unitary dilations for commuting contractions, Pacific Journal of Math- ematics. 34, 481-490.
  25. F. Riesz and B. Sz-Nagy. (1990). Functional analysis, Translated from the 2 nd French edition by L. F. Boron, Dover Publications inc., New York.
  26. J. Rosenblatt. (1988). Almost everywhere convergence of series, Mathematische Annalen. 280, 565-577.
  27. D. Schneider. (1997). Théorèmes ergodiques perturbés, Israel J. Math. 101 157-178.
  28. M. Talagrand. (1995). A borderline random Fourier series, Annals of Probability 23, n • 2, 776-785.
  29. M. Weber. (2000). Estimating random polynomials by means of metric entropy methods, Mathematical inequalities & Applications. 3, 443-457.
  30. A. Zygmund. (1968). Trigonometric Series, corrected 2nd ed., Cambridge University Press.