Academia.eduAcademia.edu

Outline

Oscillation and the mean ergodic theorem

2012

Abstract

Abstract: Let B be a uniformly convex Banach space, let T be a nonexpansive linear operator, and let A_n x denote the ergodic average (1/n) sum_ {i< n} T^ n x. A generalization of the mean ergodic theorem due to Garrett Birkhoff asserts that the sequence (A_n x) converges, which is equivalent to saying that for every epsilon> 0, the sequence has only finitely many fluctuations greater than epsilon.

References (22)

  1. Jeremy Avigad, Philipp Gerhardy, and Henry Towsner. Local stability of ergodic averages. Trans. Amer. Math. Soc., 362(1):261-288, 2010.
  2. Jeremy Avigad and Ksenija Simic. Fundamental notions of analysis in subsystems of second- order arithmetic. Ann. Pure Appl. Logic, 139(1-3):138-184, 2006.
  3. Garrett Birkhoff. The mean ergodic theorem. Duke Math. J., 5(1):19-20, 1939.
  4. Errett Bishop. An upcrossing inequality with applications. Michigan Math. J., 13:1-13, 1966.
  5. Errett Bishop. Foundations of Constructive Analysis. McGraw-Hill, New York, 1967.
  6. Errett Bishop. A constructive ergodic theorem. J. Math. Mech., 17:631-639, 1967/1968.
  7. J. L. Doob. Stochastic processes. John Wiley & Sons Inc., New York, 1953.
  8. Michael Hochman. Upcrossing inequalities for stationary sequences and applications. Ann. Probability, 37(6):2135-2149, 2009.
  9. V. V. Ivanov. Oscillations of averages in the ergodic theorem. Dokl. Akad. Nauk, 347(6):736- 738, 1996.
  10. Roger L. Jones, Iosif V. Ostrovskii, and Joseph M. Rosenblatt. Square functions in ergodic theory. Ergodic Theory Dynam. Systems, 16(2):267-305.
  11. Roger L. Jones, Robert Kaufman, Joseph M. Rosenblatt, and Máté Wierdl. Oscillation in ergodic theory. Ergodic Theory Dynam. Systems, 18(4):889-935, 1998.
  12. Roger L. Jones, Joseph M. Rosenblatt, and Máté Wierdl. Counting in ergodic theory. Canad. J. Math., 51(5):996-1019, 1999.
  13. A. G. Kachurovskiȋ. Rates of convergence in ergodic theorems. Uspekhi Mat. Nauk, 51(4(310)):73-124, 1996. Translation in Russian Math. Surveys 51 (1996), no. 4, 653-703.
  14. Steven Kalikow and Benjamin Weiss. Fluctuations of ergodic averages. Illinois J. Math., 43(3):480-488, 1999.
  15. Ulrich Kohlenbach. Applied proof theory: proof interpretations and their use in mathematics. Springer, Berlin, 2008.
  16. Ulrich Kohlenbach. A uniform quantitative form of sequential weak compactness and Baillon's nonlinear ergodic theorem. Communications in Contemporary Mathematics, to appear.
  17. Ulrich Kohlenbach and Laurentiu Leuştean. Effective metastability of Halpern iterates in CAT(0) spaces. Submitted.
  18. Ulrich Kohlenbach and Laurentiu Leuştean. A quantitative mean ergodic theorem for uni- formly convex Banach spaces. Ergodic Theory Dynam. Systems, 29(6):1907-1915, 2009. Er- ratum: Ergodic Theory Dynam. Systems 29:1995, 2009.
  19. Ulrich Kohlenbach and Katharina Schade. Effective metastability for modified Halpern iter- ations in CAT(0) spaces. Submitted.
  20. Ulrich Krengel. On the speed of convergence in the ergodic theorem. Monatsh. Math., 86(1):3- 6, 1978/79.
  21. Marian B. Pour-El and J. Ian Richards. Computability in analysis and physics. Springer, Berlin, 1989.
  22. Terence Tao. Norm convergence of multiple ergodic averages for commuting transformations. Ergodic Theory Dynam. Systems, 28(2):657-688, 2008.