Oscillation and the mean ergodic theorem
2012
Abstract
Abstract: Let B be a uniformly convex Banach space, let T be a nonexpansive linear operator, and let A_n x denote the ergodic average (1/n) sum_ {i< n} T^ n x. A generalization of the mean ergodic theorem due to Garrett Birkhoff asserts that the sequence (A_n x) converges, which is equivalent to saying that for every epsilon> 0, the sequence has only finitely many fluctuations greater than epsilon.
References (22)
- Jeremy Avigad, Philipp Gerhardy, and Henry Towsner. Local stability of ergodic averages. Trans. Amer. Math. Soc., 362(1):261-288, 2010.
- Jeremy Avigad and Ksenija Simic. Fundamental notions of analysis in subsystems of second- order arithmetic. Ann. Pure Appl. Logic, 139(1-3):138-184, 2006.
- Garrett Birkhoff. The mean ergodic theorem. Duke Math. J., 5(1):19-20, 1939.
- Errett Bishop. An upcrossing inequality with applications. Michigan Math. J., 13:1-13, 1966.
- Errett Bishop. Foundations of Constructive Analysis. McGraw-Hill, New York, 1967.
- Errett Bishop. A constructive ergodic theorem. J. Math. Mech., 17:631-639, 1967/1968.
- J. L. Doob. Stochastic processes. John Wiley & Sons Inc., New York, 1953.
- Michael Hochman. Upcrossing inequalities for stationary sequences and applications. Ann. Probability, 37(6):2135-2149, 2009.
- V. V. Ivanov. Oscillations of averages in the ergodic theorem. Dokl. Akad. Nauk, 347(6):736- 738, 1996.
- Roger L. Jones, Iosif V. Ostrovskii, and Joseph M. Rosenblatt. Square functions in ergodic theory. Ergodic Theory Dynam. Systems, 16(2):267-305.
- Roger L. Jones, Robert Kaufman, Joseph M. Rosenblatt, and Máté Wierdl. Oscillation in ergodic theory. Ergodic Theory Dynam. Systems, 18(4):889-935, 1998.
- Roger L. Jones, Joseph M. Rosenblatt, and Máté Wierdl. Counting in ergodic theory. Canad. J. Math., 51(5):996-1019, 1999.
- A. G. Kachurovskiȋ. Rates of convergence in ergodic theorems. Uspekhi Mat. Nauk, 51(4(310)):73-124, 1996. Translation in Russian Math. Surveys 51 (1996), no. 4, 653-703.
- Steven Kalikow and Benjamin Weiss. Fluctuations of ergodic averages. Illinois J. Math., 43(3):480-488, 1999.
- Ulrich Kohlenbach. Applied proof theory: proof interpretations and their use in mathematics. Springer, Berlin, 2008.
- Ulrich Kohlenbach. A uniform quantitative form of sequential weak compactness and Baillon's nonlinear ergodic theorem. Communications in Contemporary Mathematics, to appear.
- Ulrich Kohlenbach and Laurentiu Leuştean. Effective metastability of Halpern iterates in CAT(0) spaces. Submitted.
- Ulrich Kohlenbach and Laurentiu Leuştean. A quantitative mean ergodic theorem for uni- formly convex Banach spaces. Ergodic Theory Dynam. Systems, 29(6):1907-1915, 2009. Er- ratum: Ergodic Theory Dynam. Systems 29:1995, 2009.
- Ulrich Kohlenbach and Katharina Schade. Effective metastability for modified Halpern iter- ations in CAT(0) spaces. Submitted.
- Ulrich Krengel. On the speed of convergence in the ergodic theorem. Monatsh. Math., 86(1):3- 6, 1978/79.
- Marian B. Pour-El and J. Ian Richards. Computability in analysis and physics. Springer, Berlin, 1989.
- Terence Tao. Norm convergence of multiple ergodic averages for commuting transformations. Ergodic Theory Dynam. Systems, 28(2):657-688, 2008.