Academia.eduAcademia.edu

Outline

E-learning success determinants: Brazilian empirical study

2018, Computers & Education

https://doi.org/10.1016/J.COMPEDU.2017.12.001

Abstract

E-learning is a web-based learning ecosystem for the dissemination of information, communication, and knowledge for education and training. Understanding the impact of e-learning on society, as well as its benefits, is important to link e-learning systems to their success drivers. The aim of this study is to find the determinants of user perceived satisfaction, use, and individual impact of e-learning. This study proposes a theoretical model integrating theories of information systems' satisfaction and success in the e-learning systems. The model was empirically validated in higher education institutions and university centers in Brazil through a quantitative method of structural equation modeling. Collaboration quality, information quality, and user perceived satisfaction explain e-learning use. The drivers of user perceived satisfaction are information quality, system quality, instructor attitude toward e-learning, diversity in assessment, and learner perceived interaction with others. System quality, use, and user perceived satisfaction explain individual impact.

References (118)

  1. Aggelidis, V. P., & Chatzoglou, P. D. (2012). Hospital information systems: Measuring end user computing satisfaction (EUCS). Journal of Biomedical Informatics, 45(3), 566-579. https://doi.org/10.1016/j.jbi.2012.02.009
  2. Ahn, T., Ryu, S., & Han, I. (2004). The impact of the online and offline features on the user acceptance of Internet shopping malls. Electronic Commerce Research & Applications, 3(4), 405-420.
  3. Alraimi, K. M., Zo, H., & Ciganek, A. P. (2015). Understanding the MOOCs continuance: The role of openness and reputation. Computers & Education, 80, 28-38. https://doi.org/10.1016/j.compedu.2014.08.006
  4. Alsabawy, A. Y., Cater-Steel, A., & Soar, J. (2011). Measuring e-learning system success (Research in progress). Presented at the Proceedings of the 15th Pacific Asia Conference on Information Systems (PACIS 2011), Queensland University of Technology. 1-15.
  5. Al-Samarraie, H., Teng, B. K., Alzahrani, A. I., & Alalwan, N. (2017). E-learning continuance satisfaction in higher education: A unified perspective from instructors and students. Studies in Higher Education, 1-17.
  6. Amasha, M. A., & AbdElrazek, E. E. (2016). An M-Learning framework in the podcast form (MPF) using context-aware technology. International Journal Of Advanced Computer Science And Applications, 7(12), 226-234.
  7. Aparicio, M., Bacao, F., & Oliveira, T. (2014a). MOOC's business models: Turning black swans into gray swans. Proceedings of the International Conference on Information Systems and Design of Communication -ISDOC '14, 45-49. https://doi.org/10.1145/2618168.2618175
  8. Aparicio, M., Bacao, F., & Oliveira, T. (2014b). Trends in the e-learning ecosystem: A bibliometric study. In 20th Americas Conference on Information Systems, AMCIS 2014.
  9. Aparicio, M., Bacao, F., & Oliveira, T. (2016). Cultural impacts on e-learning systems' success. The Internet and Higher Education, 31, 58-70. https://doi.org/10.1016/j.iheduc.2016.06.003
  10. Aparicio, M., Bacao, F., & Oliveira, T. (2017). Grit in the path to e-learning success. Computers in Human Behavior, 66, 388-399. https://doi.org/10.1016/j.chb.2016.10.009
  11. Arbaugh, J. B. (2002). Managing the on-line classroom. Journal of High Technology Management Research, 13(2), 203-223. https://doi.org/10.1016/S1047-8310(02)00049-4
  12. Bandeira, M., dos Santos, N. B., Ribeiro, V. G., & Neto, W. P. G. (2016). Mineração de dados: A nova maneira de compreender o comportamento do usuário do ensino a distância. Blucher Design Proceedings, 2(9), 2536-2548.
  13. Barbeite, F. G., & Weiss, E. M. (2004). Computer self-efficacy and anxiety scales for an Internet sample: testing measurement equivalence of existing measures and development of new scales. Computers in Human Behavior, 20(1), 1-15.
  14. Barclay, D., Higgins, C., & Thompson, R. (1995). The partial least squares (PLS) approach to causal modeling: Personal computer adoption and use as an illustration. Technology Studies, 2(2), 285-309. https://doi.org/10.1017/CBO9781107415324.004
  15. Benbya, H., Passiante, G., & Belbaly, N. A. (2004). Corporate portal: A tool for knowledge management synchronization. International Journal of Information Management, 24(3), 201-220. https://doi.org/10.1016/j.ijinfomgt.2003.12.012
  16. Bento, F., Costa, C. J., & Aparicio, M. (2017). S.I. success models, 25 years of evolution. In 2017 12th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-6). https://doi.org/10.23919/CISTI.2017.7975884
  17. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT
  18. Brahmasrene, T., & Lee, J. W. (2012). Determinants of intent to continue using online learning: A tale of Two Universities. Interdisciplinary Journal of Information, Knowledge, and Management.
  19. Brislin, R. W. (1970). Back-translation for cross-cultural research. Journal of Cross-Cultural Psychology, 1(3), 185-216.
  20. Butzke, M. A., & Alberton, A. (2017). Estilos de aprendizagem e jogos de empresa: a percepção discente sobre estratégia de ensino e ambiente de aprendizagem. REGE-Revista de Gestão, 24(1), 72-84.
  21. Chang, J. C.-J., & King, W. R. (2005). Measuring the performance of information systems: A functional scorecard. Journal of Management Information Systems, 22(1), 85-115.
  22. Chauhan, A. (2014). Massive open online courses (MOOCS): Emerging trends in assessment and accreditation. Digital Education Review, (25), 7-17.
  23. Cheng, Y. M. (2011). Antecedents and consequences of e-learning acceptance. Information Systems Journal, 21(3), 269-299. https://doi.org/10.1111/j.1365-2575.2010.00356.x
  24. Chin, W. (1998). The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295(2), 295-336. https://doi.org/10.1016/j.aap.2008.12.010
  25. Chin, W., & Newsted, P. (1999). Structural equation modeling analysis with small samples using partial least squares. In Statistical strategies for small sample research (pp. 307-341).
  26. Chiu, C. M., Sun, S. Y., Sun, P. C., & Ju, T. L. (2007). An empirical analysis of the antecedents of web-based learning continuance. Computers and Education, 49(4), 1224-1245. https://doi.org/10.1016/j.compedu.2006.01.010
  27. Choe, J. (1996). The relationships among performance of accounting information systems, influence factors, and evolution level of information systems. Journal of Management Information Systems, 12(4), 215-239. https://doi.org/10.1080/07421222.1996.11518107
  28. Chow, W. S., & Shi, S. (2014). Investigating students' satisfaction and continuance intention toward e-learning: An extension of the expectation-confirmation model. Procedia-Social and Behavioral Sciences, 141, 1145-1149.
  29. Cohen, J. (1988). Statistical power analysis for the behavioral sciences, 2nd ed R Erlbaum. New Jersey.
  30. Costa, C. J., Ferreira, E., Bento, F., & Aparicio, M. (2016). Enterprise resource planning adoption and satisfaction determinants. Computers in Human Behavior, 63, 659-671. https://doi.org/10.1016/j.chb.2016.05.090
  31. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334. https://doi.org/10.1007/BF02310555
  32. da Cruz Duran, M. R., & da Costa, C. J. (2016). Brazilian open university system: a public policy on distance learning education in Brazil (2005-2010). Revista Tecnología, Ciencia Y Educación, (5).
  33. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT 25
  34. DeLone, W H, & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60-95. https://doi.org/10.1287/isre.3.1.60
  35. DeLone, W H, & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems / Spring, 19(4), 9-30. https://doi.org/10.1073/pnas.0914199107
  36. DeLone, William H, & McLean, E. R. (2002). Information systems success revisited (pp. 2966- 2976). Presented at the System Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii International Conference on IEEE.
  37. Detlor, B. (2000). Corporate portal as information infrastructure: Towards a framework for portal design. International Journal of Information Management, 20(2), 91-101. https://doi.org/10.1016/S0268-4012(99)00058-4
  38. Dias, L. M. de P. (2008). A avaliação de contextos de aprendizagem organizacional por e-learning pelos diferentes estilos de aprendizagem individual. Retrieved from https://repositorio.iscte-iul.pt/handle/10071/1510
  39. Doll, W. J., & Torkzadeh, G. (1988). The measurement of end-user computing satisfaction. MIS Quarterly, 12(2), 259-274. https://doi.org/10.1002/9781118785317.weom070002
  40. Elkaseh, A. M., Wong, K. W., & Fung, C. C. (2016). Perceived ease of use and perceived usefulness of social media for e-learning in Libyan higher education: A structural equation modeling analysis. International Journal of Information and Education Technology, 6(3), 192.
  41. Felice, M. Di. (2009). Paisagens pós-urbanas: o fim da experiência urbana e as formas comunicativas do habitar. São Paulo: Editora Annablume.
  42. Fornell, C., & Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19(4), 440. https://doi.org/10.2307/3151718
  43. Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 382- 388. https://doi.org/10.2307/3150980
  44. Frankola, K. (2001). Why online learners drop out. Workforce, Oct (80), 52.
  45. Gefen, D., Straub, D. W., & Boudreau, M.-C. (2000). Structural equation modeling and regression: Guidelines for Research Practice. Communications of the Association for Information Systems, 4(October), 7. https://doi.org/10.1.1.25.781
  46. George, P. P., Papachristou, N., Belisario, J. M., Wang, W., Wark, P. A., Cotic, Z., Car, L. T. (2014). Online eLearning for undergraduates in health professions: a systematic review of the impact on knowledge, skills, attitudes and satisfaction. Journal of Global Health, 4(1).
  47. Haddad, S. R., & Oliveira, A. (2017). Perception of digital citizenship among poor adult and elderly users of "Telecentros"; in Belo Horizonte. In 2017 12th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-6). https://doi.org/10.23919/CISTI.2017.7975699
  48. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT
  49. Haddad, S. R., Oliveira, A., & Cardoso, G. (2016). Framework for evaluation of digital citizenship among less favored population in Brazil. In 2016 11th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-8). https://doi.org/10.1109/CISTI.2016.7521448
  50. Hair, J. F. J., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least squares structural equation modeling (PLS-SEM). (Vicki Knight, Ed.) (Vol. 1). Thousand Oaks, California, EUA: Sage Publications, Inc. https://doi.org/10.1017/CBO9781107415324.004
  51. Hassanzadeh, A., Kanaani, F., & Elahi, S. (2012). A model for measuring e-learning systems success in universities. Expert Systems with Applications, 39(12), 10959-10966. https://doi.org/10.1016/j.eswa.2012.03.028
  52. Heinssen, R. K., Glass, C. R., & Knight, L. A. (1987). Assessing computer anxiety: Development and validation of the computer anxiety rating scale. Computers in Human Behavior, 3(1), 49-59.
  53. Henseler, J. (2010). On the convergence of the partial least squares path modeling algorithm. Computational Statistics, 25(1), 107-120. https://doi.org/10.1007/s00180-009-0164-x
  54. Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing (SSRN Scholarly Paper No. ID 2176454). Rochester, NY: Social Science Research Network. Retrieved from http://papers.ssrn.com/abstract=2176454
  55. Holsapple, C., & Lee-Post, A. (2006). Defining, assessing, and promoting e-learning success: An information systems perspective. Decision Sciences Journal of Innovative Education 4(1), 67-85. https://doi.org/10.1111/j.1540-4609.2006.00102.x
  56. Huber, F., Herrmann, A., Meyer, F., Vogel, J., & Vollhardt, K. (2007). Kausal modellierung mit partial least squares: eine anwendungsorientierte einführung. Accident; Analysis and Prevention, 68, 57-74. https://doi.org/10.1016/j.aap.2014.02.002
  57. Iivari, N. (2005). The role of organizational culture in organizational change-identifying a realistic position for prospective IS research. ECIS 2005 Proceedings.
  58. INEP. (2016). Sinopses estatísticas da educação superior, Graduação -INEP. Retrieved May 21, 2017, from http://portal.inep.gov.br/sinopses-estatisticas-da-educacao-superior
  59. Johnson, P., & Duberley, J. (2013). Understanding management research -An introduction to epistemology (Vol. 53). SAGE Publications. https://doi.org/10.1017/CBO9781107415324.004
  60. Johnson, R. D., Hornik, S., & Salas, E. (2008). An empirical examination of factors contributing to the creation of successful e-learning environments. International Journal of Human- Computer Studies, 66(5), 356-369.
  61. Kanfer, R., & Heggestad, E. D. (1997). Motivational traits and skills: A person-centered approach to work motivation. Research In Organizational Behavior, Vol 19, 1997, 19, 1-56.
  62. Lee, J.-K., & Lee, J.-H. (2005). The effect of learning management system quality and self- regulated learning strategy on effectiveness of an e-Learning. The Journal of Information Systems, 14(3), 109-116.
  63. Lee, M.-C. (2010). Explaining and predicting users' continuance intention toward e-learning: An extension of the expectation-confirmation model. Computers & Education, 54(2), 506- 516. https://doi.org/10.1016/j.compedu.2009.09.002
  64. Levy, Y. (2007). Comparing dropouts and persistence in e-learning courses. Computers & Education, 48(2), 185-204.
  65. Levy, Y., & Ramim, M. M. (2017). The e-learning skills gap study: Initial results of skills desired for persistence and success in online engineering and computing courses (57E-68E). Presented at the Proceeding of the Chais 2017 Conference on Innovative and Learning Technologies Research.
  66. Lewis, B. R., Templeton, G. F., & Byrd, T. A. (2005). A methodology for construct development in MIS research. European Journal of Information Systems, 14(4), 388-400. https://doi.org/10.1057/palgrave.ejis.3000552
  67. Liaw, S. S., Huang, H. M., & Chen, G. D. (2007). Surveying instructor and learner attitudes toward e-learning. Computers and Education, 49(4), 1066-1080. https://doi.org/10.1016/j.compedu.2006.01.001
  68. Lin, C.-P., & Bhattacherjee, A. (2010). Extending technology usage models to interactive hedonic technologies: a theoretical model and empirical test. Information Systems Journal, 20(2), 163-181. https://doi.org/10.1111/j.1365-2575.2007.00265.x
  69. Lin, H. F., & Lee, G. G. (2006). Determinants of success for online communities: an empirical study. Behaviour & Information Technology, 25(6), 479-488. https://doi.org/10.1080/014492900500330422
  70. Lin, H.-F. (2007). Measuring online learning systems success: applying the updated DeLone and McLean model. Cyberpsychology & Behavior : The Impact of the Internet, Multimedia and Virtual Reality on Behavior and Society, 10(6), 817-820. https://doi.org/10.1089/cpb.2007.9948
  71. Lin, H.-F., & Lee, G.-G. (2006). Determinants of success for online communities: An empirical study. Behaviour & Information Technology, 25(6), 479-488. https://doi.org/10.1080/01449290500330422
  72. Liu, G. Z., & Hwang, G. J. (2010). A key step to understanding paradigm shifts in e-learning: Towards context-aware ubiquitous learning. British Journal of Educational Technology, 41(2). https://doi.org/10.1111/j.1467-8535.2009.00976.x
  73. Machado-Da-Silva, F. N., Meirelles, F. D. S., Filenga, D., & Filho, M. B. (2014). Student satisfaction process in virtual learning system: Considerations based in information and service quality from Brazil's experience. Turkish Online Journal of Distance Education, 15(3). https://doi.org/10.17718/tojde.52605
  74. McGill, T. J., & Klobas, J. E. (2005). The role of spreadsheet knowledge in user-developed application success. Decision Support Systems, 39(3), 355-369. https://doi.org/10.1016/j.dss.2004.01.002
  75. McKinney, V., Yoon, K., & Zahedi, F. (2002). The measurement of Web-customer satisfaction: An expectation and disconfirmation approach. Information Systems Research, 13(3), 296-315. https://doi.org/10.1287/isre.13.3.296.76
  76. Moore, M. G. (1989). Editorial: Three types of interaction. American Journal of Distance Education, 3(2), 1-7.
  77. Moreno Jr., V., & Zaroni, R. (2015). Antecedentes e resultados do uso efetivo de LMS na educação a distância. AMCIS 2015 Proceedings. Retrieved from http://aisel.aisnet.org/amcis2015/SpanishLang/GeneralPresentations/22
  78. Nunnally, J. C., & Bernstein, I. (1994). Psychometric theory. Rdsepiucsforg. https://doi.org/10.1037/018882
  79. OECD. (2015). OECD Digital economy outlook 2015. OECD Publishing. Retrieved from http://www.oecd-ilibrary.org/science-and-technology/oecd-digital-economy-outlook- 2015_9789264232440-en
  80. Ozkan, S., & Koseler, R. (2009). Multi-dimensional students' evaluation of e-learning systems in the higher education context: An empirical investigation. Computers & Education, 53(4), 1285-1296. https://doi.org/10.1016/j.compedu.2009.06.011
  81. Paechter, M., Maier, B., & Macher, D. (2010). Students' expectations of, and experiences in e- learning: Their relation to learning achievements and course satisfaction. Computers & Education, 54(1), 222-229.
  82. Parkes, M., Stein, S., & Reading, C. (2015). Student preparedness for university e-learning environments. The Internet and Higher Education, 25, 1-10. https://doi.org/10.1016/j.iheduc.2014.10.002
  83. Peter, J. P. (1979). Reliability: A Review of psychometric basics and recent marketing practices. Journal of Marketing Research, 16(1), 6-17. https://doi.org/10.2307/3150868
  84. Piccoli, G., Ahmad, R., & Ives, B. (2001). Web-based virtual learning environments: A research framekwork and a preliminary assessment of effectiveness in basic IT skills training. MIS Quarterly, 25(4), 401-426. https://doi.org/10.2307/3250989
  85. Pitt, L. F., Watson, R. T., & Kavan, C. B. (1995). Service quality: A measure of information systems effectiveness. MIS Quarterly, 19(2), 173-187. https://doi.org/10.2307/249687
  86. Ramírez-Correa, P. E., Rondan-Cataluña, F. J., Arenas-Gaitán, J., & Alfaro-Perez, J. L. (2017). Moderating effect of learning styles on a learning management system's success. Telematics and Informatics, 34(1), 272-286.
  87. Ringle, C., Wende, S., & Becker, J. (2015). SmartPLS 3. Bönningstedt: SmartPLS. Retrieved from.
  88. Roca, J. C., Chiu, C.-M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the technology acceptance model. International Journal of Human-Computer Studies, 64(8), 683-696. https://doi.org/10.1016/j.ijhcs.2006.01.003
  89. Roca, J. C., & Gagné, M. (2008). Understanding e-learning continuance intention in the workplace: A self-determination theory perspective. Computers in Human Behavior, 24(4), 1585-1604.
  90. Schaupp, L. C., Fan, W., & Belanger, F. (2006). Determining success for different website goals. In Proceedings of the Annual Hawaii International Conference on System Sciences (Vol. 6). https://doi.org/10.1109/HICSS.2006.122
  91. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT
  92. Seddon, P. B. (1997). A respecification and extension of the DeLone and McLean Model of IS Success. Information Systems Research, 8(3), 240.
  93. Segars, A. H. (1997). Assessing the unidimensionality of measurement: a paradigm and illustration within the context of information systems research. Omega, 25(1), 107-121. https://doi.org/10.1016/S0305-0483(96)00051-5
  94. Selim, H. (2007). Critical success factors for e-learning acceptance: Confirmatory factor models. Computers & Education, 49(2), 396-413. https://doi.org/10.1016/j.compedu.2005.09.004
  95. Selim, H. M. (2003). An empirical investigation of student acceptance of course websites. Computers and Education, 40(4), 343-360. https://doi.org/10.1016/S0360- 1315(02)00142-2
  96. Shee, D. Y., & Wang, Y.-S. (2008). Multi-criteria evaluation of the web-based e-learning system: A methodology based on learner satisfaction and its applications. Computers & Education, 50(3), 894-905. https://doi.org/10.1016/j.compedu.2006.09.005
  97. Soon, K. H., Sook, K. I., Jung, C. W., & Im, K. M. (2000). The effects of Internet-based distance learning in nursing. Computers in Nursing, 18(1), 19-25.
  98. Sorgenfrei, C., Borschbach, A., & Smolnik, S. (2013). Understanding e-Learning continuance intention: Towards a conceptual model. (p. 223). Presented at the ECIS.
  99. Spielberger, C. D., & Anton, W. D. & Bedell, J. (1976). The nature and treatment of test anxiety. In emotions and anxiety: New Concepts, Methods and Applications. New York: LEA/Wiley.
  100. Straub, D. W., Boudreau, M.-C., & Gefen, D. (2004). Validation guidelines for IS positivist research. Communications of the Association for Information Systems, 13(1), 380-427. https://doi.org/Article
  101. Stricker, D., Weibel, D., & Wissmath, B. (2011). Efficient learning using a virtual learning environment in a university class. Computers & Education, 56(2), 495-504. https://doi.org/10.1016/j.compedu.2010.09.012
  102. Sun, P. C., Tsai, R. J., Finger, G., Chen, Y. Y., & Yeh, D. (2008). What drives a successful e- learning? An empirical investigation of the critical factors influencing learner satisfaction. Computers and Education, 50(4), 1183-1202. https://doi.org/10.1016/j.compedu.2006.11.007
  103. Tam, C., & Oliveira, T. (2016). Understanding the impact of m-banking on individual performance: DeLone & McLean and TTF perspective. Computers in Human Behavior, 61, 233-244.
  104. Tarhini, A., Hone, K., Liu, X., & Tarhini, T. (2017). Examining the moderating effect of individual-level cultural values on users' acceptance of e-learning in developing countries: a structural equation modeling of an extended technology acceptance model. Interactive Learning Environments, 25(3), 306-328. https://doi.org/10.1080/10494820.2015.1122635
  105. Thurmond, V. A., Wambach, K., Connors, H. R., & Frey, B. B. (2002). Evaluation of student satisfaction: Determining the impact of a Web-based environment by controlling for M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT 30 student characteristics. American Journal of Distance Education, 16(3), 169-190. https://doi.org/10.1207/S15389286AJDE1603_4
  106. Uppal, M., Gulliver, S., & Ali, S. (2017). Factors determining e-learning service quality -Uppal - 2017 -British Journal of Educational Technology -Wiley Online Library. In Advances in Computers and Technology for Education (pp. 165-175). Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/bjet.12552/full
  107. Urbach, N., & Ahlemann, F. (2010). Structural equation modeling in information systems research using partial least squares Journal of Information Technology Theory and Application, 11(2), 5-40.
  108. Urbach, N., Smolnik, S., & Riempp, G. (2010a). An empirical investigation of employee portal success. Journal of Strategic Information Systems, 19(3), 184-206. https://doi.org/10.1016/j.jsis.2010.06.002
  109. Wang, H. C., & Chiu, Y. F. (2011). Assessing e-learning 2.0 system success. Computers & Education, 57(2), 1790-1800. https://doi.org/10.1016/j.compedu.2011.03.009
  110. Wang, Y. S. (2003). Assessment of learner satisfaction with asynchronous electronic learning systems. Information and Management, 41(1), 75-86. https://doi.org/10.1016/S0378- 7206(03)00028-4
  111. Wang, Y.-S., Wang, H.-Y., & Shee, D. Y. (2007). Measuring e-learning systems success in an organizational context: Scale development and validation. Computers in Human Behavior, 23(4), 1792-1808. https://doi.org/10.1016/j.chb.2005.10.006
  112. Webster, J., & Hackley, P. (1997). Teaching effectiveness in technology-mediated distance learning. Academy of Management Journal, 40(6), 1282-1309. https://doi.org/10.2307/257034
  113. Werts, C. E., Linn, R. L., & Jöreskog, K. G. (1974). Intraclass reliability estimates: Testing structural assumptions. Educational and Psychological Measurement, 34(1), 25-33. https://doi.org/10.1177/001316447403400104
  114. Wold, H. (1985). Partial least squares. In Encyclopedia of statistical sciences (Vol. 6, pp. 582- 591).
  115. Wu, J.-H., & Wang, Y.-M. (2006). Measuring KMS success: A respecification of the DeLone and McLean's model. Information & Management, 43(6), 728-739. https://doi.org/10.1016/j.im.2006.05.002
  116. Yanaze, M. H. (2006). Gestão de marketing e comunicação: avanços e aplicações. (Editora Saraiva, Ed.).
  117. Yang, Z., Cai, S., Zhou, Z., & Zhou, N. (2005). Development and validation of an instrument to measure user perceived service quality of information presenting Web portals. Information & Management, 42(4), 575-589. https://doi.org/10.1016/j.im.2004.03.001
  118. Zhang, D., & Nunamaker, J. F. (2003). Powering e-Learning in the new millennium: An overview of e-learning and enabling technology. Information Systems Frontiers, 5(2), 207-218. https://doi.org/10.1023/A:1022609809036