Academia.eduAcademia.edu

Outline

Advances in computational intelligence

2012

https://doi.org/10.1007/978-3-319-59153-7

Abstract

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References (29)

  1. Behera, S., Arora, R., Nandhagopal, N., Kumar, S.: Importance of chemical pre- treatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Eng. Rev. 36, 91-106 (2014). http://dx.doi.org/10.1016/j.rser.2014.04.047
  2. Ravindran, R., Jaiswal, A.K.: A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour. Technol. 199, 92-102 (2016). http://dx.doi.org/10.1016/j.biortech.2015.07.106
  3. Maimon, O., Rokach, L.: The Data Mining and Knowledge Discovery Handbook, 2nd edn. Springer, Heidelberg (2010)
  4. Saavedra-Moreno, B., Salcedo-Sanz, S., Paniagua-Tineo, A., Prieto, L., Portilla- Figueras, A.: Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms. Renew. Eng. 36(11), 2838-2844 (2011)
  5. Rivera, A., Garca-Domingo, B., del Jesus, M., Aguilera, J.: Character- ization of concentrating photovoltaic modules by cooperative competitive radial basis function networks. Expert Syst. Appl. 40(5), 1599-1608 (2013). http://dx.doi.org/10.1016/j.eswa.2012.09.016
  6. García-Domingo, B., Carmona, C., Rivera-Rivas, A., Jesus, M.D., Aguilera, J.: A differential evolution proposal for estimating the maximum power delivered by CPV modules under real outdoor conditions. Expert Syst. Appl. 42(13), 5452-5462 (2015)
  7. Kusiak, A., Zheng, H., Song, Z.: Short-term prediction of wind farm power: a data mining approach. IEEE Trans. Eng. Convers. 24(1), 125-136 (2009)
  8. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Technical report, DTIC Document (1985)
  9. Park, J., Sandberg, I.: Universal approximation using radial-basis function net- works. Neural Comput. 3, 246-257 (1991)
  10. Pérez-Godoy, M., Rivera, A., del Jesus, M., Berlanga, F.: CO 2 RBFN: an evolution- ary cooperative-competitive RBFN design algorithm for classification problems. Soft. Comput. 14(9), 953-971 (2010)
  11. López-Linares, J., Romero, I., Moya, M., Cara, C., Ruiz, E., Castro, E.: Pretreat- ment of olive tree biomass with FeCl3 prior enzymatic hydrolysis. Bioresour. Tech- nol. 128, 180-187 (2013). doi:10.1016/j.biortech.2012.10.076
  12. Broomhead, D., Lowe, D.: Multivariable functional interpolation and adaptive net- works. Complex Syst. 2, 321-355 (1988)
  13. Holland, J.: Adaptation in Natural and Artificial Systems. The University of Michi- gan Press, Ann Arbor (1975)
  14. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)
  15. Bäck, T., Hammel, U., Schwefel, H.: Evolutionary computation: comments on the history and current state. IEEE Trans. Evol. Comput. 1(1), 3-17 (1997)
  16. Harpham, C., Dawson, C., Brown, M.: A review of genetic algorithms applied to training radial basis function networks. Neural Comput. Appl. 13, 193-201 (2004)
  17. Buchtala, O., Klimek, M., Sick, B.: Evolutionary optimization of radial basis func- tion classifiers for data mining applications. IEEE Trans. Syst. Man Cybern. B 35(5), 928-947 (2005)
  18. Runkler, T.A., Bezdek, J.C.: Alternating cluster estimation: a new tool for clus- tering and function approximation. IEEE Trans. Fuzzy Syst. 7(4), 377-393 (1999). doi:10.1109/91.784198
  19. Hartigan, J., Wong, M.: Algorithm as 136: a k-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100-108 (1979)
  20. Widrow, B., Lehr, M.: 30 years of adaptive neural networks: perceptron, madaline and backpropagation. Proc. IEEE 78(9), 1415-1442 (1990)
  21. Goldberg, D., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of the Second International Conference on Genetic Algorithms, pp. 41-49 (1987)
  22. Mandani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1-13 (1975)
  23. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Mult.-Valued Logic Soft Com- put. 17, 255-287 (2011)
  24. Rojas, R.: Neural Networks. Springer, Heidelberg (1996). doi:10.1007/ 978-3-642-61068-4
  25. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal mar- gin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory -COLT 1992, pp. 144-152. ACM Press, New York (1992). doi:10. 1145/130385.130401
  26. Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12(5), 1207-1245 (2000). doi:10.1162/ 089976600300015565
  27. Vapnik, V., Vapnik, V., Golowich, S.E., Smola, A.: Support vector method for function approximation, regression estimation, and signal processing. Adv. Neural Inf. Process. Syst. 9, 281-287 (1996)
  28. Fan, R., Chen, P., Lin, C.: Working set selection using the second order information for training SVM. J. Mach. Learn. Res. 6, 1889-1918 (2005)
  29. Platt, J.: Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines (1998)