Computational Intelligence - An Introduction - A. P. Engelbrecht
Abstract
Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book. All trademarks referred to in the text of this publication are the property of their To my parents, Jan and Magriet Engelbrecht, without whose loving support this would not have happened.
References (1,039)
- Selection Operators . . . . . . . . . . . . . . . . . . . . . . . .
- 3 Strategy Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.1 Static Strategy Parameters . . . . . . . . . . . . . . . . . . . . 11.3.2 Dynamic Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.3 Self-Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . .
- 4 Evolutionary Programming Implementations . . . . . . . . . . . . . . 11.4.1 Classical Evolutionary Programming . . . . . . . . . . . . . . . 11.4.2 Fast Evolutionary Programming . . . . . . . . . . . . . . . . .
- 4.3 Exponential Evolutionary Programming . . . . . . . . . . . . . 11.4.4 Accelerated Evolutionary Programming . . . . . . . . . . . . .
- 4.5 Momentum Evolutionary Programming . . . . . . . . . . . . .
- 4.6 Evolutionary Programming with Local Search . . . . . . . . . .
- 4.7 Evolutionary Programming with Extinction . . . . . . . . . . .
- 4.8 Hybrid with Particle Swarm Optimization . . . . . . . . . . . .
- Advanced Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5.1 Constraint Handling Approaches . . . . . . . . . . . . . . . . . 11.5.2 Multi-Objective Optimization and Niching . . . . . . . . . . .
- 5.3 Dynamic Environments . . . . . . . . . . . . . . . . . . . . . .
- 6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6.1 Finite-State Machines . . . . . . . . . . . . . . . . . . . . . . . 11.6.2 Function Optimization . . . . . . . . . . . . . . . . . . . . . . .
- Training Neural Networks . . . . . . . . . . . . . . . . . . . . . 11.6.4 Real-World Applications . . . . . . . . . . . . . . . . . . . . . .
- Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
- 2 Illustration of Multi-parent Center of Mass Crossover Operators . . . . 151
- 3 Diagonal Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
- 4 Mutation Operators for Binary Representations . . . . . . . . . . . . . 155
- 5 An Island GA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 10.1 Tree-Representation of XOR . . . . . . . . . . . . . . . . . . . . . . . . 178 10.2 Tree-Representation for Mathematical Expressions . . . . . . . . . . . 179 10.3 Genetic Programming Crossover . . . . . . . . . . . . . . . . . . . . . 181 10.4 Genetic Programming Mutation Operators . . . . . . . . . . . . . . . 183 11.
- Finite-State Machine [278] . . . . . . . . . . . . . . . . . . . . . . . . . 208 12.1 Illustration of Mutation Distributions for ES . . . . . . . . . . . . . . 219 12.2 Directed Mutation Operator for ES . . . . . . . . . . . . . . . . . . . . 225 12.3 Biased Mutation for Evolution Strategies . . . . . . . . . . . . . . . . 230 13.1 Differential Evolution Mutation and Crossover Illustrated . . . . . . . 243 13.2 Angle Modulation Illustrated . . . . . . . . . . . . . . . . . . . . . . . 254 14.1 Illustration of Population and Belief Spaces of Cultural Algorithms . . 263 14.2 Illustration of Belief Cells . . . . . . . . . . . . . . . . . . . . . . . . . 272 16.1 Geometrical Illustration of Velocity and Position Updates . . . . . . . 294 16.
- Multi-particle gbest PSO Illustration . . . . . . . . . . . . . . . . . . . 295 16.3 Illustration of lbest PSO . . . . . . . . . . . . . . . . . . . . . . . . . . 296 16.4 Example Social Network Structures . . . . . . . . . . . . . . . . . . . . 302 16.5 Effects of Velocity Clamping . . . . . . . . . . . . . . . . . . . . . . . . 305 16.6 Stochastic Particle Trajectory for w = 0.9 and c 1 = c 2 = 2.0 . . . . . . 315 17.1 Binary Bridge Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 361 17.2 Shortest Path Selection by Forager Ants . . . . . . . . . . . . . . . . . 362 17.3 Graph for Shortest Path Problems . . . . . . . . . . . . . . . . . . . . 365 17.
- 2-opt and 3-opt Local Search Heuristic . . . . . . . . . . . . . . . . . . 408 18.
- Antigen-Antibody-Complex . . . . . . . . . . . . . . . . . . . . . . . . 417 18.2 White Cell Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 18.3 Life Cycle of A Lymphocyte . . . . . . . . . . . . . . . . . . . . . . . . 418 18.
- B-Cell Develops into Plasma Cell, Producing Antibodies . . . . . . . . 419
- 5 Macrophage and NKTC . . . . . . . . . . . . . . . . . . . . . . . . . . 420 18.
- Co-Stimulation of T-Cell by an APC . . . . . . . . . . . . . . . . . . . 423
- 1 r-Continuous Matching Rule . . . . . . . . . . . . . . . . . . . . . . . 428
- 2 Adapted Negative Selection . . . . . . . . . . . . . . . . . . . . . . . . 430 20.1 Illustration of Membership Function for Two-Valued Sets . . . . . . . 455 20.2 Illustration of tall Membership Function . . . . . . . . . . . . . . . . . 455 20.3 Example Membership Functions for Fuzzy Sets . . . . . . . . . . . . . 458 20.4 Illustration of Fuzzy Set Containment . . . . . . . . . . . . . . . . . . 458 20.5 Illustration of Fuzzy Operators . . . . . . . . . . . . . . . . . . . . . . 460 17.
- Simple ACO Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 367 17.3 Ant System Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 371 17.4 Ant Colony System Algorithm . . . . . . . . . . . . . . . . . . . . . . 374 17.5 MMAS Algorithm with Periodic Use of the Global-Best Path . . . . 377 17.6 ANTS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 17.7 Lumer-Faieta Ant Colony Clustering Algorithm . . . . . . . . . . . . 388 17.8 Continuous Ant Colony Optimization Algorithm . . . . . . . . . . . . 397 17.
- 9 Multiple Colony ACO Local Sharing Mechanism . . . . . . . . . . . . 400 19.
- Basic AIS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
- 2 Training ALCs with Negative Selection . . . . . . . . . . . . . . . . . 429
- 3 CLONALG Algorithm for Pattern Recognition . . . . . . . . . . . . . 432 19.
- A Multi-layered AIS Algorithm . . . . . . . . . . . . . . . . . . . . . 435
- 5 Artificial Immune Network (AINE) . . . . . . . . . . . . . . . . . . . 437 19.6 Resource Allocation in the Artificial Immune Network . . . . . . . . 438 19.7 Self Stabilizing AIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
- 8 aiNet Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 443 19.
- 9 Initialization Phase for an Adaptive Mailbox . . . . . . . . . . . . . . 446 19.10 Running Phase for an Adaptive Mailbox . . . . . . . . . . . . . . . . 447
- A.1 General Local Search Algorithm . . . . . . . . . . . . . . . . . . . . .
- A.2 Simulated Annealing Algorithm . . . . . . . . . . . . . . . . . . . . . 558
- Comment on the eligibility of Turing's test for computer intelligence, and his belief that computers with 10 9 bits of storage would pass a 5-minute version of his test with 70% probability.
- Comment on the eligibility of the definition of artificial intelligence as given by the 1996 IEEE Neural Networks Council.
- Based on the definition of CI given in this chapter, show that each of the paradigms (NN, EC, SI, AIS, and FS) does satisfy the definition.
- Explain how a SOM can be used to distinguish among different hand gestures.
- Discuss a number of ways in which the SOM can be adapted to reduce its com- putational complexity.
- Explain how a SOM can be used as a classifier.
- Explain how it is possible for the SOM to train on data with missing values.
- How can a trained SOM be used to determine an appropriate value if for a given input pattern an attribute does not have a value.
- Compare the performance of an RBFNN and a FFNN on a classification problem from the UCI machine learning repository (http://www.ics.uci.edu/~mlearn/MLRepository.html).
- Compare the performance of the Gaussian and logistic basis functions.
- Suggest an alternative to compute the input-to-hidden weights instead of using LVQ-I.
- Investigate alternative methods to initialize an RBF NN.
- Is it crucial that all w kj be initialized to small random values? Motivate your answer.
- Develop a PSO, DE, and EP algorithm to train an RBFNN. 00000 00000 00000 11111 11111 11111 0000000000000000 0000000000000000 0000000000000000 1111111111111111 1111111111111111 1111111111111111 00000 00000 00000 11111 11111 11111 0000000000000000 0000000000000000 0000000000000000 1111111111111111 1111111111111111 1111111111111111 0000 0000 0000 1111 1111 1111 0000 0000 0000 1111 1111 1111 00000 00000 00000 11111 11111 11111 0000 0000 0000 1111 1111 1111 0000000000000000 0000000000000000 0000000000000000 1111111111111111 1111111111111111 1111111111111111 00000 00000 00000 11111 11111 11111 0000000000000000 0000000000000000 0000000000000000 1111111111111111 1111111111111111 1111111111111111 0000 0000 0000 1111 1111 1111 0000 0000 0000 1111 1111 1111 0000000000000000 0000000000000000 0000000000000000 1111111111111111 1111111111111111 1111111111111111 00000 00000 00000 11111 11111 11111 00000 00000 00000 11111 11111 11111 0000000000000000 0000000000000000 0000000000000000 0000000000000000 1111111111111111 1111111111111111 1111111111111111 1111111111111111 0000 0000 0000 0000 1111 1111 1111 1111 00000 00000 00000 11111 11111 11111 0000000000000000 0000000000000000 0000000000000000 1111111111111111 1111111111111111 1111111111111111 0000 0000 0000 1111 1111 1111 Reference to the time step t is included here to allow dynamic problems where distances may change over time.
- Comment on the following strategy: Let the amount of pheromone deposited be a function of the best route. That is, the ant with the best route, deposits more pheromone. Propose a pheromone update rule.
- Comment on the similarities and differences between the ant colony approach to clustering and SOMs.
- For the ant clustering algorithm, explain why (a) the 2D-grid should have more sites than number of ants;
- Antigen Epitope Variable region
- Identify the main difference between the classicial view of the NIS (a) and network theory, (b) and danger theory.
- Discuss the merit of the following statement: "The lymphocytes in the classical view perform a pattern matching function."
- At this point, discuss how the principles of a NIS can be used to solve real-world problems where anomalies need to be detected, such as fraud.
- Discuss the merit of the following statement: "A model of the NIS (based on the classical view) can be used as a classifier."
- How can an AIS be used for classification problems where there is more than two classes?
- How does the self stabilizing AIS improve on AINE?
- How does the enhanced artificial immune network improve on AINE?
- The enhanced artificial immune network calculates the number of clones gener- ated by an ARB as nc = l × sl. (a) Why is the number of clones a function of the stimulation level? (b) Explain the consequences of large and small values of l.
- For the aiNet model in Algorithm 19.5, how does network suppression help to control the size of the ARB population?
- Why should an antibody be mutated less the higher the affinity of the antibody to an antigen training pattern, considering the aiNet model?
- Discuss the influence of different values for the danger signal threshold as applied in the adaptive mailbox problem discussed in Section 19.5.2
- 2.2 Mamdani Fuzzy Controller Mamdani and Assilian [554] produced the first fuzzy controller. Mamdani-type con- trollers follow the following simple steps:
- Identify and name input linguistic variables and define their numerical ranges.
- Identify and name output linguistic variables and define their numerical ranges.
- Define a set of fuzzy membership functions for each of the input variables, as well as the output variables.
- Construct the rule base that represents the control strategy.
- Perform fuzzification of input values.
- Perform inferencing to determine firing strengths of activated rules. References
- H.A. Abbass. An Evolutionary Artificial Neural Networks Approach for Breast Cancer Diagnosis. Artificial Intelligence in Medicine, 25(3):265-281, 2002.
- H.A. Abbass. The Self-Adaptive Pareto Differential Evolution Algorithm. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 831-836, 2002.
- H.A. Abbass, R. Sarker, and C. Newton. PDE: A Pareto-Frontier Differential Evolution Approach for Multi-Objective Optimization Problems. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 971-978, 2001.
- F. Abbattista, N. Abbattistia, and L. Caponetti. An Evolutionary and Cooper- ative Agents Model for Optimization. In Proceedings of the IEEE International Conference on Evolutionary Computation, pages 668-671, 1995.
- A.M. Abdelbar and S. Abdelshahid. Swarm Optimization with Instinct-Driven Particles. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 777-782, 2003.
- M.A. Abido. Particle Swarm Optimization for Multimachine Power System Sta- bilizer Design. In Proceedings of the Power Engineering Society Summer Meet- ing, pages 1346-1351, 2001.
- M.A. Abido. Optimal Power Flow using Particle Swarm Optimization. Interna- tional Journal of Electrical Power and Energy Systems, 24(7):563-571, 2002.
- Y.S. Abu-Mostafa. The Vapnik-Chervonenkis Dimension: Information versus Complexity in Learning. Neural Computation, 1:312-317, 1989.
- Y.S. Abu-Mostafa. Hints and the VC Dimension. Neural Computation, 5:278- 288, 1993.
- D.H. Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer, Boston, M.A., 1987.
- D.K. Agrafiotis and W. Cedeño. Feature Selection for Structure-Activity Correlation using Binary Particle Swarms. Journal of Medicinal Chemistry, 45(5):1098-1107, 2002.
- O. Aichholzer, F. Aurenhammer, B. Brandstätter, T. Ebner, H. Krasser, C. Magele, M. Mühlmann, and W. Renhart. Evolution Strategy and Hierar- chical Clustering. IEEE Transactions on Magnetics, 38(2):1041-1044, 2002.
- U. Aickelin, P.J. Bentley, S. Cayzer, J. Kim, and J. McLeod. Danger Theory: The Link between AIS and IDS? In Proceedings of Second International Con- ference on Artificial Immune Systems, pages 147-155, 2003.
- U. Aickelin and S. Cayzer. The Danger Theory and Its Application to Artifi- cial Immune Systems. In Proceedings of the First International Conference on Artificial Immune Systems, pages 141-148, 2002.
- H. Akaike. A New Look at Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6):716-723, 1974.
- B. Al-Kazemi and C.K. Mohan. Multi-Phase Discrete Particle Swarm Optimiza- tion. In Proceedings of the International Workshop on Frontiers in Evolutionary Algorithms, pages 622-625, 2002.
- B. Al-Kazemi and C.K. Mohan. Multi-Phase Generalization of the Particle Swarm Optimization Algorithm. In Proceedings of the IEEE Congress on Evo- lutionary Computation, pages 489-494, 2002.
- B. Al-Kazemi and C.K. Mohan. Training Feedforward Neural Networks us- ing Multi-Phase Particle Swarm Optimization. In Proceedings of the Nineth International Conference on Neural Information Processing, volume 5, pages 2615-2619, 2002.
- M.M. Ali and A. Törn. Population Set-Based Global Optimization Algorithms: Some Modifications and Numerical Studies. Computers & Operations Research, 31(10):1703-1725, 2004.
- G.N. Aly and A.M. Sameh. Evolution of Recurrent Cascade Correlation Net- works with Distributed Collaborative Species. In Proceedings of the IEEE Sym- posium on Combinations of Evolutionary Computation, pages 240-249, 2000.
- S. Amari, N. Murata, K-R. Müller, M. Finke, and H. Yang. Asymptotic Sta- tistical Theory of Overtraining and Cross-Validation. Technical Report METR 95-06, Department of Mathematical Engineering and Information, University of Tokyo, 1995.
- S. Amari, N. Murata, K-R. Müller, M. Finke, and H. Yang. Statistical Theory of Overtraining -Is Cross-Validation Asymptotically Effective? In D.S. Touret- zky, M.C. Mozer, and M.E. Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8, pages 176-182, 1996.
- M.R. Anderberg. Cluster Analysis for Applications. Academic Press, New York, 1973.
- P.J. Angeline. Adaptive and Self-Adaptive Evolutionary Computation. In M. Palaniswami and Y. Attikiouzel, editors, Computational Intelligence: A Dy- namic Systems Perspective, pages 152-163, 1995.
- P.J. Angeline. Evolutionary Optimization versus Particle Swarm Optimization: Philosophy and Performance Differences. In Proceedings of the Seventh Annual Conference on Evolutionary Programming, pages 601-610, 1998.
- P.J. Angeline. Using Selection to Improve Particle Swarm Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 84-89, 1998.
- P.J. Angeline and J.B. Pollack. Competitive Environments Evolve Better Solu- tions for Complex Tasks. In Proceedings of the Fifth International Conference on Genetic Algorithms, pages 264-270, 1993.
- P.J. Angeline, G.M. Saunders, and J.P. Pollack. An Evolutionary Algorithm That Constructs Recurrent Neural Networks. IEEE Transactions on Neural Networks, 5(1):54-65, 1994.
- R. Annaluru, S. Das, and A. Pahwa. Multi-Level Ant Colony Algorithm for Op- timal Placement of Capacitors in Distribution Systems. In CEC2004. Congress on Evolutionary Computation, volume 2, pages 1932-1937, June 2004.
- M.J. Antunes and M.E. Correia. Towards a New Immunity-Inspired Intrusion Detection Framework. Technical Report DCC-2006-04, Departamento de Cien- cia de Computadores Faculdade de Ciencias da Universidade do Porto, 2006.
- D.V. Arnold. Evolution Strategies with Adaptively Rescaled Mutation Vectors. Technical Report CS-2005-04, Dalhousie University, 2005.
- D.V. Arnold and H-G. Beyer. A General Noise Model and Its Effects on Evolu- tion Strategy Performance. IEEE Transactions on Evolutionary Computation, 10(4):380-391, 2006.
- R. Axelrod. Evolution of Strategies in The Iterated Prisoner's Dilemma. In L. Davis, editor, Genetic Algorithms and Simulated Annealing, pages 32-41.
- Morgan Kaufmann, 1987.
- S. Aydin and H. Temeltas. Time Optimal Trajectory Planning for Mobile Robots by Differential Evolution Algorithm and Neural Networks. In Proceedings of the IEEE International Symposium on Industrial Electronics, volume 1, pages 352- 357, 2003.
- B.V. Babu and M.M.L. Jehan. Differential Evolution for Multi-Objective Opti- mization. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 4, pages 2696-2703, 2003.
- B.V. Babu and K.K.N. Sastry. Estimation of Heat Transfer Parameters in A Trickle-Bed Reactor using Differential Evolution and Orthogonal Collocation. Computers & Chemical Engineering, 23(3):327-339, 1999.
- V. Bachelet and E-G. Talbi. COSEARCH: A Co-Evolutionary Metaheuristic. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1550-1557, 2000.
- T. Bäck. Selective Pressure in Evolutionary Algorithms: A Characterization of Selection Mechanisms. In Proceedings of the First IEEE Conference on Evolu- tionary Computation, pages 57-62, 1994.
- T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York, 1996.
- T. Bäck. On The Behavior of Evolutionary Algorithms in Dynamic Environ- ments. In IEEE World Congress on Evolutionary Computation, Proceedings of the IEEE Congress on Evolutionary Computation, pages 446-451, 1998.
- T. Bäck, D.B. Fogel, and Z. Michalewicz. Evolutionary Computation 2: Ad- vanced Algorithms and Operators. IOP Press, 2000.
- T. Bäck and U. Hammel. Evolution Strategies Applied to Perturbed Objective Functions. In IEEE World Congress on Computational Intelligence, Proceedings of the IEEE Conference on Evolutionary Computation, volume 1, pages 40-45, 1994.
- T. Bäck, F. Hoffmeister, and H-P. Schwefel. A Survey of Evolution Strategies. In L.B. Belew and R.K. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 2-9, 1991.
- T. Bäck and M. Schütz. Evolution Strategies for Mixed-Integer Optimization of Optical Multilayer Systems. In J.R. McDonnell, R.G. Reynolds, and D.B. Fogel, editors, Proceedings of the Fourth Annual Conference on Evolutionary Programming, pages 35-51, Cambridge, M.A., 1995.
- T. Bäck and H.-P. Schwefel. An Overview of Evolutionary Algorithms for Pa- rameter Optimization. Evolutionary Computation, 1(1):1-23, 1993.
- J.E. Baker. Reducing Bias and Inefficiency in The Selection Algorithm. In J. Grefenstette, editor, Proceedings of the Second International Conference of Genetic Algorithms, pages 14-21, Hillsdale, N.J., 1987. Erlbaum.
- P. Baldi. Computing with Arrays of Bell-Shaped and Sigmoid Functions. In R.P. Lippmann, J.E. Moody, and D.S. Touretzky, editors, Neural Information Processing Systems, volume 3, pages 735-742, San Mateo, C.A., 1991. Morgan Kaufmann.
- W. Banzhaf. Interactive Evolution. In Handbook of Evolutionary Computation, pages C2.10:1-C2.10:6. IOP Press, 1997.
- B. Barán and M. Schaerer. A Multiobjective Ant Colony System for Vehicle Routing Problem with Time Windows. In Proceedings of the Twenty First IASTED International Conference on Applied Informatics, pages 97-102, 2003.
- E. Barnard. Performance and Generalization of the Classification Figure of Merit Criterion Function. IEEE Transactions on Neural Networks, 2(2):322-325, 1991.
- R. Battiti. First-and Second-Order Methods for Learning: Between Steepest Descent and Newton's Method. Neural Computation, 4:141-166, 1992.
- D.C. Bauer, J. Cannady, and R.C. Garcia. Detecting Anomalous Behavior: Optimization of Network Traffic Parameters via An Evolution Strategy. In Pro- ceedings of the IEEE Southeast Conference, pages 34-39, 2001.
- E.B. Baum. On the Capabilities of Multilayer Perceptrons. Journal of Complex- ity, 4:193-215, 1988.
- E.B. Baum and D. Haussler. What Size Net Gives Valid Generalization? In D.S. Touretzky, editor, Advances in Neural Information Processing Systems, volume 1, pages 81-90, 1989.
- D. Beasley, D.R. Bull, and R.R. Martin. A Sequential Niching Technique for Multimodal Function Optimization. Evolutionary Computation, 1(2):101-125, 1993.
- R.L. Becerra and C.A. Coello Coello. Culturizing Differential Evolution for Constrained Optimization. In Proceedings of the Fifth Mexican International Conference in Computer Science, pages 304-311, 2004.
- S. Becker and Y. Le Cun. Improving The Convergence of Back-Propagation Learning with Second Order Methods. In D.S. Touretzky, G.E. Hinton, and T.J. Sejnowski, editors, Proceedings of the 1988 Connectionist Summer School, pages 29-37. Morgan Kaufmann, 1988.
- L.M. Belue and K.W. Bauer. Determining Input Features for Multilayer Per- ceptrons. Neurocomputing, 7:111-121, 1995.
- A. Berlanga, P. Isasi, A. Sanchis, and J.M. Molina. Neural Networks Robot Con- troller Trained with Evolution Strategies. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 413-419, 1999.
- A. Berlanga, A. Sanchis, P. Isasi, and J.M. Molina. A General Learning Co- Evolution Method to Generalize Autonomous Robot Navigation Behavior. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 769-776, 2000.
- H-G. Beyer. Toward a Theory of 'Evolution Strategies'. Some Asymptotical Results from The (1 + , λ)-Theory. Evolutionary Computation, 1(2):165-188, 1993.
- H-G. Beyer. Toward a Theory of Evolution Strategies: On The Benefits of Sex -The(µ/µ, λ) Theory. Evolutionary Computation, 3(1):81-111, 1995.
- H-G. Beyer. Toward a Theory of Evolution Strategies: The (µ, λ)-Theory. Evo- lutionary Computation, 2(4):381-407, 1995.
- H-G. Beyer. Toward a Theory of Evolution Strategies: Self-Adaptation. Evolu- tionary Computation, 3(3):311-347, 1996.
- H-G. Beyer. Mutate Large, but Inherit Small! On the Analysis of Rescaled Mu- tations in (1, λ)-ES with Noisy Fitness Data. In A.E. Eiben, T. Bäck, M. Schoe- nauer, and H-P. Schwefel, editors, Proceedings of the Parallel Problem Solving from Nature Conference, pages 109-118. Springer Verlag, 1998.
- Z. Bian, Y. Yu, B. Zheng, M. Wang, and H. Mao. A Novel Evolution Strategy Algorithm Based on the Selected Direction by The Polar Coordinates. In In- ternational Symposium on Systems and Control in Aerospace and Astronautics, pages 907-911, 2006.
- G. Bilchev and I.C. Parmee. The Ant Colony Metaphor for Searching Continuous Design Spaces. In T. Fogarty, editor, Proceedings of the AISB Workshop on Evolutionary Computation, Lecture Notes in Computer Science, volume 993, pages 25-39. Springer-Verlag, 1995.
- G. Bilchev and I.C. Parmee. Constrained Optimisation with an Ant Colony Search Model. In Proceedings of Adaptive Computing in Engineering Design and Control, pages 145-151, 1996.
- H.K. Birru. Empirical Study of Two Classes of Bit Variation Operators in Evo- lutionary Computation. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, 1999.
- H.K. Birru, K. Chellapilla, and S.S. Rao. Local Search Operators in Fast Evo- lutionary Programming. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, 1999.
- C. Bishop. Exact Calculation of the Hessian Matrix for the Multilayer Percep- tron. Neural Computation, 4:494-501, 1992.
- T.M. Blackwell. Particle Swarms and Population Diversity II: Experiments. In Genetic and Evolutionary Computation Conference, Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, pages 14-18, 2003.
- T.M. Blackwell. Swarms in Dynamic Environments. In Proceedings of the Ge- netic and Evolutionary Computation Conference, Lecture Notes in Computer Science, volume 2723, pages 1-12, 2003.
- T.M. Blackwell and P.J. Bentley. Don't Push Me! Collision-Avoiding Swarms. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1691-1696, 2002.
- T.M. Blackwell and P.J. Bentley. Dynamic Search with Charged Swarms. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 19-26, 2002.
- C. Blum. Beam-ACO -Hybridizing Ant Colony Optimization with Beam Search: An Application to Open Shop Scheduling. Computers and Operations Research, 32(6):1565-1591, 2004.
- E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, 1999.
- E. Bonabeau, G. Theraulaz, V. Fourcassié, and J-L. Deneubourg. The Phase- Ordering Kinetics of Cemetery Organization in Ants. Physical Review E, 57:4568-4571, 1998.
- S. Bös. Optimal Weight Decay in a Perceptron. In Proceedings of the Interna- tional Conference on Artificial Neural Networks, pages 551-556, 1996.
- H.M. Botee and E. Bonabeau. Evolving Ant Colony Optimization. Advanced in Complex Systems, 1:149-159, 1998.
- D. Braendler and T. Hendtlass. The Suitability of Particle Swarm Optimization for Training Neural Hardware. In Proceedings of the Fifteenth International Conference on Industrial and Engineering, Applications of Artificial Intelligence and Expert Systems, Lecture Notes in Computer Science, volume 2358, pages 190-199. Springer-Verlag, 2002.
- J. Branke. Memory Enhanced Evolutionary Algorithm for Changing Optimiza- tion Problems. In Proceedings of the IEEE Congress on Evolutionary Compu- tation, volume 3, pages 1875-1882, 1999.
- J. Branke. Evolutionary Optimization in Dynamic Environments. Springer, 2001.
- L. Breiman. Bagging Predictors. Machine Learning, 24(2):123-140, 1996.
- H. Bremermann, M. Rogson, and S. Salaff. Global Properties of Evolution Processess. In H. Pattee, E. Edlsack, L. Fein, and A. Callahan, editors, Natural Automata and Useful Simulations, pages 3-41, Washington, D.C., 1966. Spartan Books.
- H.J. Bremermann. Optimization through Evolution and Recombination. In M.C. Yovits, G.T. Jacobi, and G.D. Goldstine, editors, Self-Organization Systems, pages 93-106. Spartan Books, 1962.
- P. Bretscher and M. Cohn. A Theory of Self-Nonself Discrimination. Science, 169:1042-1049, 1970.
- R. Brits. Niching Strategies for Particle Swarm Optimization. Master's thesis, Department of Computer Science, University of Pretoria, 2002.
- R. Brits, A.P. Engelbrecht, and F. van den Bergh. A Niching Particle Swarm Optimizer. In Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning, pages 692-696, 2002.
- R. Brits, A.P. Engelbrecht, and F. van den Bergh. Solving Systems of Uncon- strained Equations using Particle Swarm Optimization. In Proceedings of the IEEE Conference on Systems, Man, and Cybernetics, volume 3, pages 102-107, Oct 2002.
- R. Brits, A.P. Engelbrecht, and F. van den Bergh. Locating Multiple Optima using Particle Swarm Optimization. Applied Mathematics and Computation, 2007.
- D.S. Broomhead and D. Lowe. Multivariate Functional Interpolation and Adap- tive Networks. Complex Systems, 2:321-355, 1988.
- M.D. Bugajska and A.C. Schultz. Anytime Coevolution of Form and Function. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 359-366, 2003.
- B. Bullnheimer, G. Kotsis, and C. Strauss. Parallelization Strategies for The Ant System. In G. Toraldo A. Murli, P. Pardalos, editor, Kluwer Series on Applied Optimization, pages 87-100, 1997.
- W.L. Buntine and A.S. Weigend. Computing Second Order Derivatives in Feed-Forward Networks: A Review. IEEE Transactions on Neural Networks, 5(3):480-488, 1994.
- F.M. Burnet. The Clonal Selection Theory of Acquired Immunity. Vanderbilt University Press, Nashville, T.N., 1959.
- F.M. Burnet. Clonal Selection and After. In G.I. Bell, A.S. Perelson, and G.H. Pimbley Jr., editors, Theoretical Immunology, pages 63-85. Marcel Dekker Inc., New York, 1978.
- P. Burrascano. A Pruning Technique Maximizing Generalization. In Proceedings of the International Joint Conference on Neural Networks, volume 1, pages 347- 350, 1993.
- D. Camara and A.A.F. Loureiro. A GPS/Ant-Like Routing Algorithm for Ad Hoc Networks. In Proceedings of the IEEE Wireless Communications and Net- working Conference, pages 1232-1236, 2000.
- E. Cantú-Paz. A Survey of Parallel Genetic Algorithms. Calculateurs Paralleles, Reseaux et Systems Repartis, 10(2):141-171, 1998.
- E. Cantú-Paz. Migration Policies and Takeover Times in Parallel Genetic Al- gorithms. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith, editors, Proceedings of the Genetic and Evolu- tionary Computation Conference, page 775, San Francisco, C.A., 1999. Morgan Kaufmann.
- E. Cantú-Paz. Migration Policies, Selection Pressure, and Parallel Evolutionary Algorithms. Technical Report IlliGAL Report No. 99015, University of Illinois at Urbana-Champaign, 1999.
- E. Cantú-Paz. Parallel Genetic Algorithms with Distributed Panmictic Popu- lations. Technical Report IlliGAL Report No. 99006, University of Illinois at Urbana-Champaign, 1999.
- E. Cantú-Paz. Topologies, Migration Rates, and Multi-Population Parallel Genetic Algorithms. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference, pages 91-98, San Francisco, C.A., 1999. Morgan Kaufmann.
- P. Cardoso, M. Jesús, and A. Márquez. MONACO -Multi-Objective Network Optimization Based on an ACO. In Proceedings of Encuentros de Geometría Computacional, 2003.
- A. Carlisle. Applying the Particle Swarm Optimizer to Non-Stationary Environ- ments. PhD thesis, Auburn University, 2002.
- A. Carlisle and G. Dozier. Adapting Particle Swarm Optimization to Dynamic Environments. In Proceedings of the International Conference on Artificial In- telligence, pages 429-434, 2000.
- A. Carlisle and G. Dozier. An Off-the-Shelf PSO. In Proceedings of the Workshop on Particle Swarm Optimization, pages 1-6, 2001.
- A. Carlisle and G. Dozier. Tracking Changing Extrema with Adaptive Particle Swarm Optimizer. In Proceedings of the Fifth Biannual World Automation Congress, pages 265-270, 2002.
- T.D.H. Cau and R.J. Kaye. Multiple Distributed Energy Storage Scheduling using Constructive Evolutionary Programming. In Proceedings of the Twenty- Secondth IEEE Power Engineering Society International Conference on Power Industry Computer Applications, pages 402-407, 2001.
- J.L. Ceciliano and R. Bieva. Transmission Network Planning using Evolutionary Programming. In Proceedings of the IEEE Congress on Evolutionary Computa- tion, volume 3, 1999.
- CS. Chang and D. Du. Differential Evolution Based Tuning of Fuzzy Automatic Train Operation for Mass Rapid Transit System. IEE Proceedings of Electric Power Applications, 147(3):206-212, 2000.
- T-T. Chang and H-C. Chang. Application of differential evolution to passive shunt harmonic filter planning. In Proceedings of the Eigth International Con- ference on Harmonics and Quality of Power, volume 1, pages 149-153, 1999.
- Y-P. Chang and C-J. Wu. Design of Harmonic Filters using Combined Feasible Direction Method and Differential Evolution. In Proceedings of the International Conference on Power System Technology, volume 1, pages 812-817, 2004.
- D. Chaturvedi, K. Deb, and S.K. Chakraborty. Structural Optimization using Real-Coded Genetic Algorithms. In P.K. Roy and S.D. Mehta, editors, Proceed- ings of the Symposium on Genetic Algorithms, pages 73-82, Dehradun, 1995. Mahendra Pal Singh.
- Y. Chauvin. A Back-Propagation Algorithm with Optimal use of Hidden Units. In D.S. Touretzky, editor, Advances in Neural Information Processing Systems, volume 1, pages 519-526, 1989.
- Y. Chauvin. Dynamic Behavior of Constrained Back-Propagation Networks. In D.S. Touretzky, editor, Advances in Neural Information Processing Systems, volume 2, pages 642-649, 1990.
- K. Chellapilla. Combining Mutation Operators in Evolutionary Programming. IEEE Transactions on Evolutionary Computation, 2(3):91-96, 1998.
- K. Chellapilla and D.B. Fogel. Evolution, Neural Networks, Games, and Intelli- gence. In Proceedings of the IEEE, pages 1471-1496, 1999.
- K. Chellapilla and D.B. Fogel. Evolving Neural Networks to Play Checkers with- out Expert Knowledge. IEEE Transactions on Neural Networks, 10(6):1382- 1391, 1999.
- K. Chellapilla and D.B. Fogel. Anaconda Defeats Hoyle 6-0: A Case Study Competing an Evolved Checkers Program against Commercially Available Soft- ware. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 857-863, 2000.
- C-W. Chen, D-Z. Chen, and G-Z. Cao. An Improved Differential Evolution Algorithm in Training and Encoding Prior Knowledge into Feedforward Net- works with Application in Chemistry. Chemometrics and Intelligent Laboratory Systems, 64(1):27-43, 2002.
- S. Chen, S.A. Billings, C.F.N. Cowan, and P.P. Grant. Practical Identification of NARMAX Models using Radial Basis Functions. International Journal of Control, 52:1327-1350, 1990.
- J-P. Chiou and F-S. Wang. A Hybrid Method of Differential Evolution with Ap- plication to Optimal Control Problems of A Bioprocess System. In IEEE World Congress on Computational Intelligence, Proceedings of the IEEE International Conference on Evolutionary Computation, pages 627-632, 1998.
- J-P. Chiou and F-S. Wang. Hybrid Method of Evolutionary Algorithms for Static and Dynamic Optimization Problems with Application to A Fed-Batch Fermentation Process. Computers & Chemical Engineering, 23(9):1277-1291, 1999.
- D-H. Choi and S-Y. Oh. A New Mutation Rule for Evolutionary Programming Motivated from Backpropagation Learning. IEEE Transactions on Evolutionary Computation, 4(2):188-190, 2000.
- L. Chrétien. Organisation Spatiale du Matériel Provenant de l'excavation du nid chez Messor Barbarus et des Cadavres d'ouvrières chez ''Lasius niger'' (Hy- menopterae: Formicidae). PhD thesis, Université Libre de Bruxelles, 1996.
- C-J. Chung and R.G. Reynolds. A Testbed for Solving Optimization Prob- lems using Cultural Algorithms. In L.J Fogel, P.J. Angeline, and T. Bäck, edi- tors, Proceedings of the Fifth Annual Conference on Evolutionary Programming, pages 225-236, Cambridge, M.A., 1996. MIT Press.
- T. Cibas, F. Fogelman Soulié, P. Gallinari, and S. Raudys. Variable Selection with Neural Networks. Neurocomputing, 12:223-248, 1996.
- A. Cichocki and R. Unbehauen. Neural Networks for Optimization and Signal Processing. Wiley, New York, 1993.
- V.A. Cicirello and S.F. Smith. Ant Colony Control for Autonomous Decentral- ized Shop Floor Routing. In Proceedings of the Fifth International Symposium on Autonomous Decentralized Systems, pages 383-390, 2001.
- J.M. Claverie, K. de Jong, and A.F. Sheta. Robust Nonlinear Control Design using Competitive Coevolution. In Proceedings of the IEEE Congress on Evo- lutionary Computation, volume 1, pages 403-409, 2000.
- M. Clerc. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization. In Proceedings of the IEEE Congress on Evolu- tionary Computation, volume 3, pages 1951-1957, 1999.
- M. Clerc. Think Locally, Act Locally: The Way of Life of Cheap-PSO, An Adaptive PSO. Technical report, http://clerc.maurice.free.fr/pso/, 2001.
- M. Clerc. Discrete Particle Swarm Optimization. In New Optimization Tech- niques in Engineering, Lecture Notes in Computer Science, volume 3612. Springer-Verlag, 2004.
- M. Clerc and J. Kennedy. The Particle Swarm-Explosion, Stability, and Con- vergence in a Multidimensional Complex Space. IEEE Transactions on Evolu- tionary Computation, 6(1):58-73, 2002.
- I. Cloete and J. Ludik. Increased Complexity Training. In J. Mira, J. Cabestany, and A. Prieto, editors, International Workshop on Artificial Neural Networks, Lecture Notes in Computer Science, pages 267-271, Berlin, 1993. Springer- Verlag.
- I. Cloete and J. Ludik. Delta Training Strategies. In IEEE World Congress on Computational Intelligence, Proceedings of the International Joint Conference on Neural Networks, volume 1, pages 295-298, 1994.
- I. Cloete and J. Ludik. Incremental Training Strategies. In Proceedings of the International Conference on Artificial Neural Networks, volume 2, pages 743- 746, 1994.
- G. Coath and S.K. Halgamuge. A Comparison of Constraint-Handling Methods for The Application of Particle Swarm Optimization to Constrained Nonlinear Optimization Problems. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 4, pages 2419-2425, 2003.
- H.G. Cobb. An Investigation into The Use of Hypermutation as An Adaptive Operator in Genetic Algorithms having Continuous, Time-Dependent Nonsta- tionary Environments. Technical Report AIC-90-001, Naval Research Labora- tory, Washington, D.C., 1990.
- J.P. Coelho, P.B. De Moura Oliveira, and J. Boa Ventura Cunha. Non-Linear Concentration Control System Design using A New Adaptive PSO. In Proceed- ings of the 5th Portuguese Conference on Automatic Control, 2002.
- J.P. Coelho, P.M. Oliveira, and J.B. Cunha. Greenhouse Air Temperature Con- trol using the Particle Swarm Optimisation Algorithm. In Proceedings of the Fifteenth Triennial World Congress of the International Federation of Automatic Control, 2002.
- C.A. Coello Coello. Self-Adaptive Penalties for GA-Based Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1, 1999.
- C.A. Coello Coello and R.L. Becerra. Constrained Optimization using an Evo- lutionary Programming-based Cultural Algorithm. In I.C. Parmee, editor, Pro- ceedings of the Fifth International Conference on Adaptive Computing in Design and Manufacture, volume 5, pages 317-328. Springer-Verlag, 2002.
- C.A. Coello Coello and R.L. Becerra. Evolutionary Multiobjective Optimization using a Cultural Algorithm. In Proceedings of the IEEE Swarm Intelligence Symposium, pages 6-13, 2003.
- C.A. Coello Coello and M.S. Lechuga. MOPSO: A Proposal for Multiple Ob- jective Particle Swarm Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1051-1056, 2002.
- C.A. Coello Coello, G. Toscano Pulido, and M. Salazar Lechuga. An Extension of Particle Swarm Optimization that can Handle Multiple Objectives. In Workshop on Multiple Objective Metaheuristics, 2002.
- C.A. Coello Coello, D.A. van Veldhuizen, and G.B. Lamont. Evolutionary Algo- rithms for Solving Multi-Objective Problems. Plenum US, 2002.
- C.A. Coello Coello, D.A. Van Veldhuizen, and G.B. Lamont. Evolutionary Al- gorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, 2002.
- D. Cohn, L. Atlas, and R. Ladner. Improving Generalization with Active Learn- ing. Machine Learning, 15:201-221, 1994.
- D. Cohn and G. Tesauro. Can Neural Networks do Better than the Vapnik- Chervonenkis Bounds? In R. Lippmann, J. Moody, and D.S. Touretzky, editors, Advances in Neural Information Processing Systems, volume 3, pages 911-917, 1991.
- D.A. Cohn. Neural Network Exploration using Optimal Experiment Design. Technical Report AI Memo No 1491, Artificial Intelligence Laboratory, Mas- sachusetts Institute of Technology, 1994.
- D.A. Cohn, Z. Ghahramani, and M.I. Jordan. Active Learning with Statistical Models. Journal of Artificial Intelligence Research, 4:129-145, 1996.
- A. Conradie, R. Miikkulainen, and C. Aldrich. Adaptive Control Utilizing Neu- ral Swarming. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 60-67, 2002.
- J. Conradie and A.P. Engelbrecht. Training Bao Game-Playing Agents using Coevolutionary Particle Swarm Optimization. In Proceedings of the IEEE Sym- posium on Computational Intelligence in Games, pages 67-74, 2006.
- D. Corne, M. Dorigo, and F. Glover. New Ideas in Optimization. McGraw-Hill, 1999.
- M. Cosnard, P. Koiran, and H. Paugam-Moisy. Complexity Issues in Neural Network Computations. In I. Simon, editor, Proceedings of the First Latin American Symposium on Theoretical Informatics, Lecture Notes in Computer Science, volume 583, pages 530-543. Springer-Verlag, 1992.
- L. Costa and P. Oliveira. An Evolution Strategy for Multiobjective Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 97-102, 2002.
- M. Cottrell, B. Girard, Y. Girard, M. Mangeas, and C. Muller. SSM: A Statisti- cal Stepwise Method for Weight Elimination. In Proceedings of the International Conference on Artificial Neural Networks, volume 1, pages 681-684, 1994.
- T. Coudert, P. Berruet, and J-L. Philippe. Integration of Reconfiguration in Transitic Systems: An Agent-Based Approach. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 4, pages 4008-4014, 2003.
- R. Coulom. Feedforward Neural Networks in Reinforcement Learning Applied to High-Dimensional Motor Control. In N. Cesa-Bianchi et. al., editor, Lecture Notes in Artificial Intelligence, pages 403-413, Berlin Heidelberg, 2002. Springer- Verlag.
- G.S. Cowan and R.G. Reynolds. Learning to Access the Quality of Genetic Programs using Cultural Algorithms. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, pages 1679-1686, 1999.
- I.L. López Cruz, L.G. van Willigenburg, and G. van Straten. Efficient Differential Evolution algorithms for multimodal optimal control problems. Applied Soft Computing, 3(2):97-122, 2003.
- I.L. López Cruz, L.G. van Willigenburg, and G. van Straten. Optimal Control of Nitrate in Lettuce by a Hybrid Approach: Differential Evolution and Adjustable Control Weight Gradient Algorithms. Computers and Electronics in Agriculture, 40(1-3):179-197, 2003.
- Y. Le Cun, J.S. Denker, and S.A. Solla. Optimal Brain Damage. In D. Touretzky, editor, Advances in Neural Information Processing Systems, volume 2, pages 598-605, 1990.
- Y. Le Cun, I. Kanter, and S.A. Solla. Second Order Properties of Error Sur- faces: Learning Time and Generalization. In R.P. Lippmann, J.E. Moody, and D.S. Touretzky, editors, Advances in Neural Information Processing Systems, volume 3, pages 918-924, 1990.
- T. Czernichow. Architecture Selection through Statistical Sensitivity Analysis. In Proceedings of the International Conference on Artificial Neural Networks, pages 179-184, 1996.
- N. Damavandi and S. Safavi-Nacini. A Hybrid Evolutionary Programming Method for Circuit Optimization. IEEE Transactions on Circuits and Systems -I: Regular Papers, 52(5):902-910, 2005.
- C. Darken and J. Moody. Note on Learning Rate Schedules for Stochastic Op- timization. In R. Lippmann, J. Moody, and D.S. Touretzky, editors, Advances in Neural Information Processing Systems, volume 3, 1991.
- P.J. Darwen and J.B. Pollack. Co-Evolutionary Learning on Noisy Tasks. In P.J. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, and A. Zalzala, editors, Pro- ceedings of the IEEE Congress on Evolutionary Computation, volume 3, pages 1724-1731, 6-9 1999.
- P.J. Darwen and X. Yao. Speciation as Automatic Categorical Modularization. IEEE Transactions on Evolutionary Computation, 1(2):101-108, 1997.
- C.R. Darwin. On the Origin of Species by Means of Natural Selection or Preser- vation of Favoured Races in the Struggle for Life. Murray, London, 1859.
- I. Das and J. Dennis. A Closer Look at Drawbacks of Minimizing Weighted Sums of Objectives for Pareto Set Generation in Multicriteria Optimization Problems. Structural Optimization, 14(1):63-69, 1997.
- D. Dasgupta. Artificial Immune Systems and their Applications. Springer: Berlin, 1998.
- D. Dasgupta and S. Forrest. An Anomaly Detection Algorithm Inspired by the Immune System. In D. Dasgupta, editor, Artificial Immune Systems and Their Applications, pages 262-277. Springer-Verlag, 1999.
- J. Davidson. Stochastic Limit Theory. Oxford Scholarship Online Monographs, 1994.
- L. Davis. Hybridization and Numerical Representation. In L. Davis, editor, The Handbook of Genetic Algorithms, pages 61-71. Van Nostrand Reinhold, 1991.
- R. Dawkins. The Blind Whatchmaker. Norton, New York, 1986.
- R.M. de A Silva and G.L. Ramalho. Ant System for the Set Covering Problem. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pages 3129-3133, 2001.
- L.N. de Castro and J. Timmis. An Artificial Immune Network for Multimodal Function Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 699-704, 2002.
- L.N. de Castro and J. Timmis. Artificial Immune Systems: A New Computa- tional Approach. Springer-Verlag, London, UK, 2002.
- L.N. de Castro and F.J. Von Zuben. Artificial Immune Systems: Part I -Ba- sic Theory and Applications. Technical Report DCA-RT 01/99, Department of Computer Engineering and Industrial Automation, School of Electrical and Computer Engineering, State University of Campinas, Brazil, 1999.
- L.N. de Castro and F.J. Von Zuben. An Evolutionary Immune Network for Data Clustering. In Proceedings of the IEEE Brazilian Symposium on Artificial Neural Networks, pages 84-89, 2000.
- L.N. de Castro and F.J. Von Zuben. Artificial Immune Systems: Part II -A Survey Of Applications. Technical Report DCA-RT 02/00, Department of Com- puter Engineering and Industrial Automation, School of Electrical and Computer Engineering, State University of Campinas, Brazil, February 2000.
- L.N. de Castro and F.J. Von Zuben. The Clonal Selection Algorithm with En- gineering Applications. In Proceedings of the Genetic and Evolutionary Compu- tational Conference, pages 36-37, 2000.
- L.N. de Castro and F.J. Von Zuben. AiNet: An Artificial Immune Network for Data Analysis. In Hussein A. Abbass, Ruhul A. Sarker, and Charles S. Newton, editors, Data Mining: A Heuristic Approach. Idea Group Publishing, USA, 2001.
- L.N. de Castro and F.J. Von Zuben. An Immunological Approach to Initialize Centers of Radial Basis Function Neural Networks. In Proceedings of the Fifth Brazilian Conference on Neural Networks, pages 79-84, 2001.
- L.N. de Castro and F.J. Von Zuben. An Immunological Approach to Initialize Feedforward Neural Network Weights. In Proceedings of the International Con- ference on Artificial Neural Networks and Genetic Algorithms, pages 126-129, 2001.
- L.N. de Castro and F.J. Von Zuben. Learning and Optimization Using the Clonal Selection Principle. IEEE Transactions on Evolutionary Computation, Special Issue on Artificial Immune Systems, 6(3):239-251, 2002.
- K. de Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, University of Michigan, 1975.
- K. de Jong and J. Sarma. Generation Gaps Revisited. In Foundations of Genetic Algorithms, volume 2, pages 19-28. Morgan Kaufmann, 1992.
- K.A. de Jong and R.W. Morrison. A Test Problem Generator for Non-Stationary Environments. In Proceedings of the IEEE Congress on Evolutionary Computa- tion, pages 2047-2053, 1999.
- K.A. de Jong and M.A. Potter. Evolving Complex Structures via Cooperative Coevolution. In Proceedings of the Fourth Annual Conference on Evolutionary Programming, pages 307-317, Cambridge, MA, 1995. MIT Press.
- K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley & Sons, 2002.
- K. Deb and R.B. Agrawal. Simulated Binary Crossover for Continuous Space. Complex Systems, 9:115-148, 1995.
- K. Deb, S. Agrawal, A. Patrap, and T. Meyarivan. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In Pro- ceedings of the Sixth Parallel Problem Solving in Nature Conference, pages 849- 858, 2000.
- K. Deb, D. Joshi, and A. Anand. Real-Coded Evolutionary Algorithms with Parent-Centric Recombination. In Proceedings of the IEEE Congress on Evolu- tionary Computation, pages 61-66, 2002.
- J-L. Deneubourg, S. Aron, S. Goss, and J-M. Pasteels. The Self-Organizing Exploratory Pattern of the Argentine Ant. Journal of Insect Behavior, 3:159- 168, 1990.
- J-L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, and L. Chrétien. The Dynamics of Collective Sorting: Robot-Like Ant and Ant- Like Robot. In J.A. Meyer and S.W. Wilson, editors, Proceedings of the First Conference on Simulation of Adaptive Behavior: From Animals to Animats, pages 356-365. MIT Press, 1991.
- J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Opti- mization and Nonlinear Equations. Prentice-Hall, 1983.
- J. Depenau and M. Møller. Aspects of Generalization and Pruning. In IEEE World Congress on Computational Intelligence, Proceedings of the International Joint Conference on Neural Networks, volume 3, pages 504-509, 1994.
- K.I. Diamantaras and S.Y. Kung. Principal Component Neural Networks: The- ory and Applications. Wiley, New York, 1996.
- E. Diaz-Dorado, J.C. Pidre, and E.M. Garcia. Planning of Large Rural Low- Voltage Networks using Evolution Strategies. IEEE Transactions on Power Systems, 18(2):1594-1600, 2003.
- K. Doerner, W.J. Gutjahr, R.F. Hartl, C. Strauss, and C. Stummer. Pareto Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection. Annals of Operations Research, 131:79-99, 2004.
- J.U. Dolinsky, I.D. Jenkinson, and G.J. Colquhoun. Application of Genetic Programming to the Calibration of Industrial Robots. Computers in Industry, 58(3):255-264, 2007.
- A.V. Donati, R. Montemanni, L.M. Gambardella, and A.E. Rizzoli. Integration of a Robust Shortest Path Algorithm with a Time Dependent Vehicle Routing Model and Applications. In Proceedings of the IEEE International Symposium on Computational Intelligence for Measurement Systems and Applications, pages 26-31, 2003.
- M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Po- litecnico di Milano, 1992.
- M. Dorigo. Learning by Probabilistic Boolean Networks. In Proceedings of the IEEE International Conference on Neural Networks, pages 887-891, 1994.
- M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant Algorithms and Stigmergy. Future Generation Computer Systems, 16(9):851-871, 2000.
- M. Dorigo and G. Di Caro. Ant Colony Optimization: A New Meta-Heuristic. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, page 1477, July 1999.
- M. Dorigo and G. Di Caro. The Ant Colony Optimization Meta-Heuristic. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 11-32. McGraw-Hill, 1999.
- M. Dorigo and L. Gambardella. A Study of Some Properties of Ant-Q. In Proceedings of the Fourth International Conference on Parallel Problem Solving From Nature, pages 656-665, 1996.
- M. Dorigo and L.M. Gambardella. Ant Colonies for the Travelling Salesman Problem. Biosystems, 43(2):73-81, 1997.
- M. Dorigo and L.M. Gambardella. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Transactions on Evolution- ary Computation, 1(1):53-66, 1997.
- M. Dorigo, V. Maniezzo, and A. Colorni. Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics- Part B, 26(1):29-41, 1996.
- M. Dorigo and T. Stützle. An Experimental Study of the Simple Ant Colony Optimization Algorithm. In Proceedings of the WSES International Conference on Evolutionary Computation, pages 253-258, 2001.
- B. Dorizzi, G. Pellieux, F. Jacquet, T. Czernichow, and A. Muñoz. Variable Selection using Generalized RBF Networks: Application to the Forecast of the French T-Bonds. In Proceedings of Computational Engineering in Systems Ap- plications, pages 122-127, 1996.
- L. dos Santos Coelho and V.C. Mariani. An Efficient Particle Swarm Optimiza- tion Approach Based on Cultural Algorithm Applied to Mechanical Design. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 1099- 1104, 2006.
- H. Drucker. Boosting using Neural Networks. In A. Sharkey, editor, Combining Artificial Neural Nets, Perspectives in Neural Computing, pages 51-78. Springer, 1999.
- W. Duch and J. Korczak. Optimization and Global Minimization Methods Suit- able for Neural Networks. Neural Computing Surveys, 2:163-212, 1998.
- R. Durbin and D.E. Rumelhart. Product Units: A Computationally Power- ful and Biologically Plausible Extension to Backpropagation Networks. Neural Computation, 1:133-142, 1989.
- W. Durham. Co-Evolution: Genes, Culture and Human Diversity. Stanford University Press, 1994.
- R.C. Eberhart and J. Kennedy. A New Optimizer using Particle Swarm The- ory. In Proceedings of the Sixth International Symposium on Micromachine and Human Science, pages 39-43, 1995.
- R.C. Eberhart and Y. Shi. Evolving Artificial Neural Networks. In Proceedings of the International Conference on Neural Networks and Brain, pages PL5-PL13, 1998.
- R.C. Eberhart and Y. Shi. Comparing Inertia Weights and Constriction Fac- tors in Particle Swarm Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 84-88, 2000.
- R.C. Eberhart and Y. Shi. Particle Swarm Optimization: Developments, Appli- cations and Resources. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 27-30, May 2001.
- R.C. Eberhart and Y. Shi. Tracking and Optimizing Dynamic Systems with Particle Swarms. In Proceedings of the IEEE Congress on Evolutionary Com- putation, volume 1, pages 94-100, 2001.
- R.C. Eberhart, P.K. Simpson, and R.W. Dobbins. Computational Intelligence PC Tools. Academic Press Professional, first edition, 1996.
- J. Eggers, D. Feillet, S. Kehl, M.O. Wagner, and B. Yannou. Optimization of the Keyboard Arrangement Problem using an Ant Colony Algorithm. European Journal of Operational Research, 148(3):672-686, 2003.
- A. E. Eiben and C. A. Schippers. On Evolutionary Exploration and Exploitation. Fundamenta Informaticae, 35(1-4):35-50, 1998.
- A.E. Eiben, P-E. Raué, and Z. Ruttkay. Genetic Algorithms with Multi-parent Recombination. In Y. Davidor, H-P. Schwefel, and R. Männer, editors, Pro- ceedings of the Parallel Problem Solving from Nature Conference, pages 78-87, Berlin, 1994. Springer.
- A.E. Eiben, C.H.M. van Kemenade, and J.N. Kok. Orgy in the Computer: Multi-Parent Reproduction in Genetic Algorithms. Technical Report CS-R9548, Centrum voor Wiskunde en Informatica, 1995.
- A.I. El-Gallad, M.E. El-Hawary, A.A. Sallam, and A. Kalas. Enhancing the Particle Swarm Optimizer via Proper Parameters Selection. In Proceedings of the Canadian Conference on Electrical and Computer Engineering, pages 792- 797, 2002.
- M.Y. El-Sharkh and A.A. El-Keib. Maintenance Scheduling of Generation and Transmission Systems using Fuzzy Evolutionary Programming. IEEE Transac- tions on Power Systems, 18(2):862-866, 2003.
- J.L. Elman. Distributed Representations, Simple Recurrent Networks, and Grammatical Structure. Machine Learning, 7(2/3):195-226, 1991.
- A.P. Engelbrecht. Data Generation using Sensitivity Analysis. In Proceedings of the International Symposium on Computational Intelligence, 2000.
- A.P. Engelbrecht. A New Pruning Heuristic Based on Variance Analysis of Sensitivity Information. IEEE Transactions on Neural Networks, 12(6), 2001.
- A.P. Engelbrecht. Sensitivity Analysis for Selective Learning by Feedforward Neural Networks. Fundamenta Informaticae, 45(1):295-328, 2001.
- A.P. Engelbrecht and I. Cloete. A Sensitivity Analysis Algorithm for Pruning Feedforward Neural Networks. In Proceedings of the IEEE International Con- ference in Neural Networks, volume 2, pages 1274-1277, 1996.
- A.P. Engelbrecht and I. Cloete. Feature Extraction from Feedforward Neural Networks using Sensitivity Analysis. In Proceedings of the International Con- ference on Systems, Signals, Control, Computers, volume 2, pages 221-225, 1998.
- A.P. Engelbrecht and I. Cloete. Selective Learning using Sensitivity Analysis. In IEEE World Congress on Computational Intelligence, Proceedings of the In- ternational Joint Conference on Neural Networks, pages 1150-1155, 1998.
- A.P. Engelbrecht and I. Cloete. Incremental Learning using Sensitivity Analysis. In Proceedings of the IEEE International Joint Conference on Neural Networks, volume 2, pages 1350-1355, 1999.
- A.P. Engelbrecht, I. Cloete, J. Geldenhuys, and J.M. Zurada. Automatic Scaling using Gamma Learning for Feedforward Neural Networks. In J. Mira and F. San- doval, editors, Proceedings of the International Workshop on Artificial Neural Networks, Lecture Notes in Computer Science, volume 930, pages 374-381, 1995.
- A.P. Engelbrecht, I. Cloete, and J.M. Zurada. Determining the Significance of Input Parameters using Sensitivity Analysis. In J. Mira and F. Sandoval, editors, International Workshop on Artificial Neural Networks, Lecture Notes in Computer Science, volume 930, pages 382-388, 1995.
- A.P. Engelbrecht, L. Fletcher, and I. Cloete. Variance Analysis of Sensitivity Information for Pruning Feedforward Neural Networks. In Proceedings of the IEEE International Joint Conference on Neural Networks, 1999.
- A.P. Engelbrecht and A. Ismail. Training Product Unit Neural Networks. Sta- bility and Control: Theory and Applications, 2(1-2):59-74, 1999.
- A.P. Engelbrecht, S. Rouwhorst, and L. Schoeman. A Building Block Approach to Genetic Programming for Rule Discovery. In H.A. Abbass, R.A. Sarker, and C.S. Newton, editors, Data Mining: A Heuristic Approach, pages 174-189. Idea Group Publishing, 2002.
- T.M. English. Learning to Focus Selectively on Possible Lines of Play in Check- ers. In Proceedings of the IEEE Congress on Evolutionary Computation, vol- ume 2, pages 1019-1024, 2001.
- L.J. Eshelman, R.A. Caruana, and J.D. Schaffer. Biases in the Crossover Land- scape.
- In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 10-19, 1989.
- L.J. Eshelman and J.D. Schaffer. Real-Coded Genetic Algorithms and Interval Schemata. In D. Whitley, editor, Foundations of Genetic Algorithms, volume 2, pages 187-202, San Mateo, 1993. Morgan Kaufmann.
- S. Fahlman and C. Lebiere. The Cascade-Correlation Learning Architecture. Technical Report CMU-CS-90-100, Carnegie Mellon University, 1990.
- S.E. Fahlman. Fast Learning Variations on Back-Propagation: An Empirical Study. In D.S. Touretzky, G.E. Hinton, and T.J. Sejnowski, editors, Proceedings of the 1988 Connectionist Summer School, pages 38-51. Morgan Kaufmann, 1988.
- H-Y. Fan. A Modification to Particle Swarm Optimization Algorithm. Engi- neering Computations, 19(7-8):970-989, 2002.
- J. Farmer, N. Packard, and A. Perelson. The Immune System, Adaptation and Machine Learning. Physica D, 22:187-204, 1986.
- M. Fathi-Torbaghan and L. Hildebrand. Model-Free Optimization of Fuzzy Rule- based System using Evolution Strategies. IEEE Transactions on Systems, Man, and Cybernetics, 27(2):270-277, 1997.
- J. Favilla, A. Machion, and F. Gomide. Fuzzy Traffic Control: Adaptive Strate- gies. In Proceedings of the IEEE Symposium on Fuzzy Systems, 1993.
- V. Feoktistov and S. Janaqi. Generalization of The Strategies in Differential Evolution. In Proceedings of the Eighteenth Parallel and Distributed Processing Symposium, page 165, 2004.
- J.E. Fieldsend and S. Singh. A Multi-Objective Algorithm Based upon Particle Swarm Optimisation. In Proceedings of the UK Workshop on Computational Intelligence, pages 37-44, 2003.
- W. Finnoff, F. Hergert, and H.G. Zimmermann. Improving Model Selection by Nonconvergent Methods. Neural Networks, 6:771-783, 1993.
- L. Fletcher, V. Katkovnik, F.E. Steffens, and A.P. Engelbrecht. Optimizing the Number of Hidden Nodes of a Feedforward Artificial Neural Network. In IEEE World Congress on Computational Intelligence, Proceedings of the International Joint Conference on Neural Networks, pages 1608-1612, 1998.
- R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, 1987.
- C.A. Floudas and P.M. Pardalos. Recent Advances in Global Optimization. Princeton Series in Computer Science, Princeton University Press, 1991.
- T.C. Fogarty. Varying the Probability of Mutation in the Genetic Algorithm. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 104-109, San Mateo, C.A., 1989. Morgan Kaufmann.
- D.B. Fogel. System Identification through Simulated Evolution: A Machine Learning Approach to Modeling. Ginn Press, Needham Heights, MA, 1991.
- D.B. Fogel. Evolving Artificial Intelligence. PhD thesis, University of California, 1992.
- D.B. Fogel. Applying Fogel and Burgin's 'Competitive Goal-Seeking through Evolutionary Programming' to Coordination, Trust, and Bargaining Games. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1210-1216, 2000.
- D.B. Fogel. Blondie24: Playing at the edge of A.I. Morgan Kaufmann, 2001.
- D.B. Fogel, G.B. Fogel, and K. Ohkura. Multiple-Vector Self-Adaptation in Evolutionary Algorithms. BioSystems, 61(2-3):155-162, 2001.
- D.B. Fogel and L.J. Fogel. Optimal Routing of Multiple Autonomous Underwa- ter Vehicles through Evolutionary Programming. In Proceedings of the Sympo- sium on Autonomous Underwater Vehicle Technology, pages 44-47, 1990.
- D.B. Fogel, L.J. Fogel, and J.W. Atmar. Meta-Evolutionary Programming. In Proceedings of the Twenty-Fifth Conference on Signals, Systems and Computers, volume 1, pages 540-545, 1991.
- D.B. Fogel, L.J. Fogel, and V.W. Porto. Evolutionary Programming for Training Neural Networks. In Proceedings of the IEEE International Joint Conference on Neural Networks, volume 1, pages 601-605, 1990.
- D.B. Fogel, T.J. Hays, and D.R. Johnson. A Platform for Evolving Characters in Competitive Games. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1420-1426, 2004.
- G.B. Fogel, G.W. Greenwood, and K. Chellapilla. Evolutionary Computa- tion with Extinction: Experiments and Analysis. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1415-1420, 2000.
- L.J. Fogel. Autonomous Automata. Industrial Research, 4:14-19, 1962.
- L.J. Fogel. On the Organization of Intellect. PhD thesis, University of California, Los Angeles, 1964.
- L.J. Fogel, P.J. Angeline, and D.B. Fogel. An Evolutionary Programming Approach to Self-Adaptation on Finite State Machines. In J. McDonnell, R. Reynolds, and D.B. Fogel, editors, Proceedings of the Fourth Annual Con- ference on Evolutionary Programming, pages 355-365. MIT Press, 1995.
- L.J. Fogel, A. Owens, and M. Walsh. Artificial Intelligence through Simulated Evolution. John Wiley & Sons, 1966.
- S. Forrest and S. Hofmeyr. Immunology as Information Processing. In L.A. Segel and I. Cohen, editors, Design Principles for the Immune System and Other Distributed Autonomous Systems. Oxford University Press, Santa Fe Institute Studies in the Sciences of Complexity. New York, 2001.
- S. Forrest, S. Hofmeyr, and A. Somayaji. Computer Immunology. Communica- tions of the ACM, 40(10):88-96, 1997.
- S. Forrest, A.S. Perelson, L. Allen, and R. Cherukuri. Self-Nonself Discrimination in a Computer. In Proceedings of the IEEE Symposium on Research in Security and Privacy, pages 202-212, 1994.
- O. Fournier, P. Lopez, and J-D. Lan Sun Luk. Cyclic Scheduling Following the Social Behavior of Ant Colonies. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 3, page 5, October 2002.
- N. Franken. PSO-Based Coevolutionary Game Learning. Master's thesis, De- partment of Computer Science, University of Pretoria, 2004.
- N. Franken and A.P. Engelbrecht. Comparing PSO Structures to Learn the Game of Checkers from Zero Knowledge. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 234-241, 2003.
- N. Franken and A.P. Engelbrecht. PSO Approaches to Co-Evolve IPD Strategies. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 356- 363, 2004.
- N. Franken and A.P. Engelbrecht. Particle Swarm Optimisation Approaches to Co-evolve Strategies for the Iterated Prisoner's Dilemma. IEEE Transactions on Evolutionary Computation, 9(6):562-579, 2005.
- B. Franklin and M. Bergerman. Cultural Algorithms: Concepts and Exper- iments. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1245-1251, 2000.
- A.S. Fraser. Simulation of Genetic Systems by Automatic Digital Computers I: Introduction. Australian Journal of Biological Science, 10:484-491, 1957.
- A.S. Fraser. Simulation of Genetic Systems by Automatic Digital Computers II: Effects of Linkage on Rates of Advance Under Selection. Australian Journal of Biological Science, 10:492-499, 1957.
- Y. Freund and R.E. Schapire. A Short Introduction to Boosting. Journal of Japanese Society for Artificial Intelligence, 14(5):771-780, 1999.
- B. Fritzke. Incremental Learning of Local Linear Mappings. In Proceedings of the International Conference on Artificial Neural Networks, pages 217-222, 1995.
- O. Fujita. Optimization of the Hidden Unit Function in Feedforward Neural Networks. Neural Networks, 5:755-764, 1992.
- T. Fukuda and N. Kubota. Learning, Adaptation and Evolution of Intelligent Robotic System. In Proceedings of the IEEE International Symposium on Intel- ligent Control, pages 2-7, 1998.
- T. Fukuda, K. Mori, and M. Tsukiyama. Parallel Search for Multi-Modal Func- tion Optimization with Diversity and Learning of Immune Algorithm. In D. Das- gupta, editor, Artificial Immune Systems and their Applications, pages 210-220. Springer, 1998.
- K. Fukumizu. Active Learning in Multilayer Perceptrons. In D.S. Touretzky, M.C. Mozer, and M.E. Hasselmo, editors, Advances in Neural Information Pro- cessing Systems, volume 8, pages 295-301, 1996.
- Y. Fukuyama, S. Takayama, Y. Nakanishi, and H. Yoshida. A Particle Swarm Optimization for Reactive Power and Voltage Control in Electric Power Systems. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 1523-1528, 1999.
- Y. Fukuyama and H. Yoshida. A Particle Swarm Optimization for Reactive Power and Voltage Control in Electric Power Systems. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 87-93, 2001.
- R. Gadagkar and N.V. Joshi. Quantitative Ethology of Social Wasps: Time- Activity Budgets and Caste Differences in Ropalidia Marginata (L). Animal Behavior, 31:26-31, 1983.
- Z-L. Gaing. Particle Swarm Optimization to Solving the Economic Dispatch Considering the Generator Constraints. IEEE Transactions on Power Systems, 18(3):1187-1195, 2003.
- L.M. Gambardella and M. Dorigo. Ant-Q: A Reinforcement Learning Approach to the TSP. In Proceedings of Twelfth International Conference on Machine Learning, pages 252-260, 1995.
- L.M. Gambardella and M. Dorigo. Solving Symmetric and Asymmetric TSPs by Ant Colonies. In Proceedings of IEEE International Conference on Evolutionary Computation, pages 622-627, 1996.
- L.M. Gambardella and M. Dorigo. An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem. Informs Journal of Computing, 12(3):237-255, 2000.
- L.M. Gambardella, E. Taillard, and G. Agazzi. MACS-VRPTW: A Multiple Ant Colony System for Vehicle Routing Problems with Time Windows. Technical Report IDSIA-06-99, IDSIA, Lugano, Switzerland, 1999.
- L.M. Gambardella, E.D. Taillard, and M. Dorigo. Ant Colonies for the QAP. Journal of the Operational Research Sociery, 50:167-176, 1999.
- J. Gan and K. Warwick. A Variable Radius Niche Technique for Speciation in Genetic Algorithms. In Proceedings of the Genetic and Evolutionary Computa- tion Conference, pages 96-103. Morgan-Kaufmann, 2000.
- J. Gan and K. Warwick. Dynamic Niche Clustering: A Fuzzy Variable Radius Niching Technique for Multimodal Optimization in GAs. In Proceedings of the IEEE Congress on Evolutionary Computation, volume I, pages 215-222, 2001.
- J. Gan and K. Warwick. Modelling Niches of Arbitrary Shape in Genetic Al- gorithms using Niche Linkage in the Dynamic Niche Clustering Framework. In Proceedings of the IEEE World Congress on Evolutionary Computation, pages 43-48, 2002.
- W. Gao. Fast Immunized Evolutionary Programming. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 666-670, 2004.
- N. Garcia-Pedrajas, C. Hervas-Martinez, and J. Munoz-Perez. COVNET: A Co- operative Coevolutionary Model for Evolving Artificial Neural Networks. IEEE Transactions on Neural Networks, 25(3):575-596, 2003.
- M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco, 1979.
- T.D. Gedeon, P.M. Wong, and D. Harris. Balancing Bias and Variance: Network Topology and Pattern Set Reduction Techniques. In J. Mira and F. Sandoval, ed- itors, Proceedings of the International Workshop on Artificial Neural Networks, Lecture Notes in Computer Science, volume 930, pages 551-558, 1995.
- D. Gehlhaar and D. Fogel. Tuning Evolutionary Programming for Conforma- tionally Flexible Molecular Docking. In L. Fogel, P. Angeline, and T. Bäck, editors, Proceedings of the Fifth Annual Conference on Evolutionary Program- ming, pages 419-429. MIT Press, 1996.
- S. Geman, E. Bienenstock, and R. Dousart. Neural Networks and the Bias/Variance Dilemma. Neural Computation, 4:1-58, 1992.
- J. Ghosh and Y. Shin. Efficient Higher-Order Neural Networks for Classifica- tion and Function Approximation. International Journal of Neural Systems, 3(4):323-350, 1992.
- J.C. Giarratano. Expert Systems: Principles and Programming. PWS Publish- ing, third edition, 1998.
- D. Gies and Y. Rahmat-Samii. Reconfigurable Antenna Array Design using Parallel PSO. In Proceedings of the IEEE Society International Conference on Antennas and Propagation, pages 177-180, 2003.
- P.E. Gill, W. Murray, and M.H. Wright. Practical Optimization. Academic Press, 1983.
- F. Girosi, M. Jones, and T. Poggio. Regularization Theory and Neural Network Architectures. Neural Computation, 7:219-269, 1995.
- F. Glover. Future Paths for Integer Programming and Links to Artificial Intel- ligence. Computers and Operations Research, 13:533-549, 1986.
- D.E. Goldberg and K. Deb. A Comparison of Selection Schemes used in Genetic Algorithms. In G.J.E. Rawlins, editor, Foundations of Genetic Algorithms, pages 69-93. Morgan Kaufmann, 1991.
- D.E. Goldberg, K. Deb, and J.H. Clark. Don't Worry, Be Messy. In Proceed- ings of the Fourth International Conference on Genetic Algorithms and Their Applications, pages 24-30, 1991.
- D.E. Goldberg, H. Kargupta, K. Deb, and G. Harik. Rapid, Accurate Optimiza- tion of Difficult Problems using Fast Messy Genetic Algorithms. In Proceedings of the Fifth International Conference on Genetic Algorithms, pages 56-64. Mor- gan Kaufmann, 1993.
- D.E. Goldberg, B. Korb, and K. Deb. Messy Genetic Algorithms: Motivation, Analysis, and First Results. Complex Systems, 3:493-530, 1989.
- D.E. Goldberg, B. Korb, and K. Deb. Messy Genetic Algorithms Revisited: Studies in Mixed Size and Scale. Complex Systems, 3:415-444, 1990.
- D.E. Goldberg and J. Richardson. Genetic Algorithm with Sharing for Mul- timodal Function Optimization. In Proceedings of the Second International Conference on Genetic Algorithms, pages 41-49, 1987.
- D.E. Goldberg and L. Wang. Adaptive Niching via Coevolutionary Sharing. In D. Quagliarella, J. Périaux, C. Poloni, and G. Winter, editors, Genetic Al- gorithms and Evolution Strategy in Engineering and Computer Science, pages 21-38. John Wiley and Sons, Chichester, 1998.
- F. Gonzalez, D. Dasgupta, and R. Kozma. Combining Negative Selection and Classification Techniques for Anomaly Detection. In Proceedings of the Congress on Evolutionary Computation, volume 1, pages 705-710, 2002.
- D.M. Gordon and N.J. Mehdiabadi. Encounter Rate and Task Allocation in Harvester Ants. Behavioral Ecololgy and Sociobiology, 45:370-377, 1999.
- V.S. Gordon and D. Whitley. Serial and Parallel Genetic Algorithms as Func- tion Optimizers. In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 177-183. Morgan Kaufmann, 1993.
- S. Goss, S. Aron, J.L. Deneubourg, and J.M. Pasteels. Self-Organized Shortcuts in the Argentine Ant. Naturwissenschaften, 76:579-581, 1989.
- J.C. Goswami, R. Mydur, and P. Wu. Application of Differential Evolution Al- gorithm to Model-Based Well Log-Data Inversion. In Proceedings of the Inter- national Symposium of the Antennas and Propagation Society, volume 1, pages 318-321, 2002.
- A.J. Graaff and A.P. Engelbrecht. Optimised Coverage of Non-self with Evolved Lymphocytes in an Artificial Immune System. International Journal of Compu- tational Intelligence Research, 2(2):127-150, 2006.
- P-P. Grassé. La Reconstruction du nid et les Coordinations Individuelles chez Bellicositermes Natalensis et Cubitermes sp. la Théorie de la Stigmergie: Essai d'interprétation du Comportement des Termites Constructeurs. Insectes Soci- aux, 6:41-80, 1959.
- M. Gravel, W.L. Price, and C. Gagné. Scheduling Continuous Casting of Alu- minum using a Multiple Objective Ant Colony Optimization Metaheuristic. Eu- ropean Journal of Operational Research, 143(1):218-229, 2002.
- J.J. Grefenstette. Parallel Adaptive Algorithms for Function Optimization. Technical Report CS-81-19, Vanderbilt University, Computer Science Depart- ment, Nashville, 1981.
- J.J. Grefenstette. Genetic Algorithms for Changing Environments. In R. Maen- ner and B. Manderick, editors, Proceedings of the Parallel Problem Solving from Nature Conference, volume 2, pages 137-144, 1992.
- H. Gu and H. Takahashi. Estimating Learning Curves of Concept Learning. Neural Networks, 10(6):1089-1102, 1997.
- V.G. Gudise and G.K. Venayagamoorthy. Comparison of Particle Swarm Opti- mization and Backpropagation as Training Algorithms for Neural Networks. In Proceedings of the IEEE Swarm Intelligence Symposium, pages 110-117, 2003.
- M. Guntsch and M. Middendorf. Pheromone Modification Strategies for Ant Algorithms Applied to Dynamic TSP. In Proceedings of the Workshop on Ap- plications of Evolutionary Computing, pages 213-222, 2001.
- M. Guntsch and M. Middendorf. Applying Population Based ACO to Dynamic Optimization Problems. In Proceedings of Third International Workshop on Ant Colony Optimization and Swarm Intelligence, pages 111-122, 2003.
- K. Hadeli, P. Valckenaers, M. Kollingbau, and H. Van Brussel. Multi-Agent Coordination and Control using Stigmergy. Computers in Industry, 53(1):75- 96, 2004.
- M. Hagiwara. Removal of Hidden Units and Weights for Back Propagation Net- works. In Proceedings of the International Joint Conference on Neural Networks, volume 1, pages 351-354, 1993.
- H. Handa, N. Baba, O. Katai, T. Sawaragi, and T. Horiuchi. Genetic Algorithm Involving Coevolution Mechanism to Search for Effective Genetic Information. In Proceedings of the IEEE International Conference on Evolutionary Compu- tation, pages 709-714, 1997.
- J. Handl, J. Knowles, and M. Dorigo. Ant-Based Clustering: A Comparative Study of Its Relative Performance with Respect to k-Means, Average Link and 1D-SOM. Technical Report TR/IRIDIA/2003-24, Université Libre de Bruxelles, 2003.
- J. Handl and B. Meyer. Improved Ant-Based Clustering and Sorting in a Docu- ment Retrieval Interface. In Proceedings of the Seventh International Conference on Parallel Problem Solving from Nature, Lecture Notes in Computer Science, volume 2439, pages 913-923. Springer-Verlag, 2002.
- S.J. Hanson and L.Y. Pratt. Comparing Biases for Minimal Network Construc- tion with Back-Propagation. In D.S. Touretzky, editor, Advances in Neural Information Processing Systems, volume 1, pages 177-185, 1989.
- S. Harding and J.F. Miller. Evolution of Robot Controller Using Cartesian Genetic Programming. In Lecture Notes in Computer Science, volume 3447, pages 62-73, 2005.
- A.G. Hart and F.L.W. Ratnieks. Task Partitioning, Division of Labour and Nest Compartmentalisation Collectively Isolate Hazardous Waste in the Leafcutting Ant Atta Cephalotes. Behavioral Ecology and Sociobiology, 49:387-392, 2001.
- E.F. Hartman, J.D. Keeler, and J.M. Kowalski. Layered Neural Networks with Gaussian Hidden Units as Universal Approximators. Neural Computation, 2(2):210-215, 1990.
- Y Hasegawa, K. Mase, and T. Fukuda. Re-Grasping Behavior Acquisition by Evolutionary Programming. In Proceedings of the IEEE Congress on Evolution- ary Computation, volume 1, 1999.
- B. Hassibi and D.G. Stork. Second Order Derivatives for Network Pruning: Optimal Brain Surgeon. In C. Lee Giles, S.J. Hanson, and J.D. Cowan, editors, Advances in Neural Information Processing Systems, volume 5, pages 164-171, 1993.
- B. Hassibi, D.G. Stork, and G. Wolff. Optimal Brain Surgeon: Extensions and Performance Comparisons. In J.D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Systems, volume 6, pages 263-270, 1994.
- D. Haussler, M. Kearns, M. Opper, and R. Schapire. Estimating Average-Case Learning Curves using Bayesian, Statistical Physics and VC Dimension Method. In J. Moody, S.J. Hanson, and R. Lippmann, editors, Advances in Neural Infor- mation Processing Systems, volume 4, pages 855-862, 1992.
- D.S. Hawkins, D.M. Allen, and A.J. Stromberg. Determining the number of com- ponents in mixtures of linear models. Computational Statistics & Data Analysis, 38(1):15-48, 2001.
- M. Hayashi. A Fast Algorithm for the Hidden Units in a Multilayer Percep- tron. In Proceedings of the International Joint Conference on Neural Networks, volume 1, pages 339-342, 1993.
- S. Haykin. Neural Networks: A Comprehensive Foundation. MacMillan, 1994.
- T. Haynes and S. Sen. Evolving Behavioral Strategies in Predators and Prey. In S. Sen, editor, International Joint Conference on Artificial Intelligence, Work- shop on Adaptation and Learning in Multiagent Systems, pages 32-37, Montreal, Quebec, Canada, 1995. Morgan Kaufmann.
- T. Haynes and S. Sen. Cooperation of the Fittest. In J.R. Koza, editor, Late Breaking Papers at the Genetic Programming Conference, pages 47-55, Stanford University, C.A., 1996. Stanford Bookstore.
- Z. He, C. Wei, L. Yang, X. Gao, S. Yao, R.C. Eberhart, and Y. Shi. Extracting Rules from Fuzzy Neural Network by Particle Swarm Optimization. In Proceed- ings of the IEEE Congress on Evolutionary Computation, pages 74-77, 1998.
- T. Hendtlass. A Combined Swarm Differential Evolution Algorithm for Opti- mization Problems. In Proceedings of the Fourteenth International Conference on Industrial and Engineering Applications of Artificial Intelligence and Ex- pert Systems, Lecture Notes in Computer Science, volume 2070, pages 11-18. Springer-Verlag, 2001.
- T. Hendtlass and M. Randall. A Survey of Ant Colony and Particle Swarm Meta-Heuristics and Their Application to Discrete Optimization Problems. In Proceedings of the Inaugural Workshop on Artificial Life, pages 15-25, 2001.
- A. Hertz, E. Taillard, and R. de Werra. A Tutorial on Tabu Search. In Proceed- ings of Giornate di Lavoro (Enterprise Systems: Management of Technical and Organizational Changes), pages 13-24, 1995.
- H. Higashi and H. Iba. Particle Swarm Optimization with Gaussian Mutation. In Proceedings of the IEEE Swarm Intelligence Symposium, pages 72-79, 2003.
- L. Hildebrand, B. Reusch, and M. Fathi. Directed Mutation -A New Self- Adaptation for Evolution Strategies. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 1550-1557, 1999.
- W.D. Hillis. Co-Evolving Parasites Improve Simulated Evolution as an Op- timization Procedure. In S. Forrest, editor, Emergent Computation: Self- Organizing, Collective, and Cooperative Computing Networks, pages 228-234. MIT Press, 1990.
- R. Hinterding. Gaussian Mutation and Self-Adaption for Numeric Genetic Al- gorithms. In Proceedings of the International Conference on Evolutionary Com- putation, volume 1, page 384, 1995.
- N. Hirata, A. Ishigame, and H. Nishigaito. Neuro Stabilizing Control Based on Lyapunov Method for Power System. In Proceedings of the Fourty-First SICE Annual Conference, volume 5, pages 3169-3171, 2002.
- Y. Hirose, K. Yamashita, and S. Hijiya. Back-Propagation Algorithm which Varies the Number of Hidden Units. Neural Networks, 4:61-66, 1991.
- R.J.W Hodgson. Particle Swarm Optimization Applied to the Atomic Cluster Optimization Problem. In Proceedings of the Genetic and Evolutionary Compu- tation Conference, pages 68-73, 2002.
- K. Hoe, W. Lai, and T. Tai. Homogeneous Ants for Web document Similarity Modeling and Categorization. In Proceedings of the Third International Work- shop on Ant Algorithms, Lecture Notes in Computer Science, volume 2463, pages 256-261. Springer-Verlag, 2002.
- J. Hoffmeyer. The Swarming Body. In I. Rauch and G.F. Carr, editors, Semi- otics Around the World, Proceedings of the Fifth Congress of the International Association for Semiotic Studies, pages 937-940, 1994.
- S. Hofmeyr. An Immunological Model of Distributed Detection and Its Applica- tion to Computer Security. PhD thesis, University of New Mexico, 1999.
- S. Hofmeyr and S. Forrest. Immunity by Design: An Artificial Immune System. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 1289-1296, 1999.
- S. Hofmeyr and S. Forrest. Architecture for an Artificial Immune System. Evo- lutionary Computation, 8(4):443-473, 2000.
- A. Hole. Vapnik-Chervonenkis Generalization Bounds for Real Valued Neural Networks. Neural Computation, 8:1277-1299, 1996.
- J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michi- gan Press, Ann Arbor, 1975.
- J.H. Holland. ECHO: Explorations of Evolution in a Miniature World. In J.D. Farmer and J. Doyne, editors, Proceedings of the Second Conference on Artificial Life, 1990.
- B. Hölldobler and E.O. Wilson. Journey of the Ants: A Story of Scientific Exploration. Harvard University Press, 1994.
- L. Holmström and P. Koistinen. Using Additive Noise in Back-Propagation Training. IEEE Transactions on Neural Networks, 3:24-38, 1992.
- A. Homaifar, A.H-Y. Lai, and X. Qi. Constrained Optimization via Genetic Algorithms. Simulation, 2(4):242-254, 1994.
- A. Hoorfar. Mutation-Based Evolutionary Algorithms and their Applications to Optimization of Antennas in Layered Media. In Proceedings of the Antennas and Propagation Society International Symposium, volume 4, pages 2876-2879, 1999.
- J. Horn, N. Nafpliotis, and D.E. Goldberg. A Niched Pareto Genetic Algorithm for Multiobjective Optimization. In Proceedings of the IEEE Symposium on Circuits and Systems, pages 2264-2267, 1991.
- K. Hornik. Multilayer Feedforward Networks are Universal Approximators. Neu- ral Networks, 2:359-366, 1989.
- O. Hrstka and A. Kucerová. Improvements of Real Coded Genetic Algorithms Based on Differential Operators Preventing Premature Convergence. Advances in Engineering Software, 35(3-4):237-246, 2004.
- X. Hu and R.C. Eberhart. Tracking Dynamic Systems with PSO: Where's the Cheese? In Proceedings of the Workshop on Particle Swarm Optimization, pages 80-83, 2001.
- X. Hu and R.C. Eberhart. Adaptive Particle Swarm Optimization: Detection and Response to Dynamic Systems. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1666-1670, 2002.
- X. Hu and R.C. Eberhart. Multiobjective Optimization using Dynamic Neigh- borhood Particle Swarm Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1677-1681, 2002.
- X. Hu and R.C. Eberhart. Solving Constrained Nonlinear Optimization Prob- lems with Particle Swarm Optimization. In Proceedings of the Sixth World Multiconference on Systemics, Cybernetics and Informatics, 2002.
- X. Hu, R.C. Eberhart, and Y. Shi. Particle Swarm with Extended Memory for Multiobjective Optimization. In Proceedings of the IEEE Swarm Intelligence Symposium, pages 193-197, 2003.
- H-J. Huang and F-S. Wang. Fuzzy Decision-Making Design of Chemical Plant using Mixed-Integer Hybrid Differential Evolution. Computers & Chemical En- gineering, 26(12):1649-1660, 2002.
- S-J. Huang. Enhancement of Hydroelectric Generation Scheduling using Ant Colony System Based Optimization Approaches. IEEE Transactions on Energy Conversion, 3:296-301, September 2001.
- T-Y. Huang and Y-Y. Chen. Modified Evolution Strategies with a Diversity- Based Parent-Inclusion Scheme. In Proceedings of the IEEE International Con- ference on Control Applications, pages 379-384, 2000.
- Z-Y. Huang and G.E. Robinson. Regulation of Honey Bee Division of Labor by Colony Age Demography. Behavioral Ecology and Sociobiology, 39:147-158, 1996.
- W. Huapeng and H. Handroos. Utilization of Differential Evolution in Inverse Kinematics Solution of a Parallel Redundant Manipulator. In Proceedings of the Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies, volume 2, pages 812-815, 2000.
- S. Huband, P. Hingston, L. While, and L. Barone. An Evolution Strategy with Probabilistic Mutation for Multi-Objective Optimisation. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 4, pages 2284-2291, 2003.
- P.J. Huber. Robust Statistics. John Wiley & Sons, 1981.
- H. Hüning. A Node Splitting Algorithm that Reduces the Number of Connec- tions in a Hamming Distance Classifying Network. In J. Mira, J. Cabestany, and A. Prieto, editors, International Workshop on Artificial Neural Networks, Lecture Notes in Computer Science, volume 686, pages 102-107, Berlin, 1993. Springer-Verlag.
- J.E. Hunt and D.E. Cooke. Learning using an Artificial Immune System. Journal of Network and Computer Applications, 19(2):189-212, 1996.
- S.D. Hunt and J.R. Deller (Jr). Selective Training of Feedforward Artificial Neural Networks using Matrix Perturbation Theory. Neural Networks, 8(6):931- 944, 1995.
- D.R. Hush, J.M. Salas, and B. Horne. Error Surfaces for Multi-Layer Percep- trons. In International Joint Conference on Neural Networks, volume 1, pages 759-764, 1991.
- A. Hussain, J.J. Soraghan, and T.S. Durbani. A New Neural Network for Non- linear Time-Series Modelling. NeuroVest Journal, pages 16-26, 1997.
- J-N. Hwang, J.J. Choi, S. Oh, and R.J. Marks II. Query-Based Learning Ap- plied to Partially Trained Multilayer Perceptrons. IEEE Transactions on Neural Networks, 2(1):131-136, 1991.
- J. Iivarinen, T. Kohonen, J. Kangas, and S. Kaski. Visualizing the Clusters on the Self-Organizing Map. In Proceedings of the Conference on AI Research in Finland, pages 122-126, 1994.
- M.G. Ippolito, E. Riva Sanseverino, and F. Vuinovich. Multi-Objective Ant Colony Search Algorithm for Optimal Electrical Distribution System Strategical Planning. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 1924-1931, 2004.
- S. Iredi, D. Merkle, and M. Middendorf. Bi-Criterion Optimization with Multi Colony Ant Algorithms. In Proceedings of the First International Conference on Evolutionary Multicriterion Optimization, Lecture Notes in Computer Science, volume 1993, pages 359-372. Springer-Verlag, 2001.
- A. Ismail. Training and Optimization of Product Unit Neural Networks. Master's thesis, Department of Computer Science, University of Pretoria, 2001.
- A. Ismail and A.P. Engelbrecht. Training Product Units in Feedforward Neural Networks using Particle Swarm Optimization. In Proceedings of the Interna- tional Conference on Artificial Intelligence, pages 36-40, 1999.
- A. Ismail and A.P. Engelbrecht. Global Optimization Algorithms for Training Product Unit Neural Networks. In Proceedings of the IEEE International Joint Conference on Neural Networks, volume 1, pages 132-137, 2000.
- K. Izumi, M.M.A. Hashem, and K. Watanabe. An Evolution Strategy with Com- peting Subpopulations. In Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, pages 306-311, 1997.
- R.A. Jacobs. Increased Rates of Convergence Through Learning Rate Adaption. Neural Networks, 1(4):295-308, 1988.
- C.Z. Janikow and Z. Michalewicz. An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms. In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International Conference in Genetic Algorithms, pages 31-36. Morgan Kaufmann, 1991.
- D.J. Janson and J.F. Frenzel. Training Product Unit Neural Networks with Genetic Algorithms. IEEE Expert, 8(5):26-33, 1993.
- J. Jantzen. Design of Fuzzy Controllers. Technical Report 98-E864, Department of Automation, Technical University of Denmark, 1998.
- V.K. Jayaraman, B.D. Kulkarni, S. Karale, and P. Shelokar. Ant Colony Frame- work for Optimal Design and Scheduling of Batch Plants. Computers and Chem- ical Engineering, 24(8):1901-1912, 2000.
- J. Jeong and S-Y. Oh. Automatic Rule Generation for Fuzzy Logic Controllers using Rule-Level Co-Evolution of Subpopulations. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, 1999.
- N.K. Jerne. Towards a Network Theory of the Immune System. Annals of Immunology, 125C(1-2):373-389, 1974.
- C. Jiang and C. Wang. Improved Evolutionary Programming with Dynamic Mutation and Metropolis Criteria for Multi-Objective Reactive Power Optimi- sation. IEE Proceedings, 152(2):291-294, 2005.
- C. Jiang and C. Wang. Improved evolutionary programming with dynamic mu- tation and metropolis criteria for multi-objective reactive power optimisation. IEE Proceedings: Generation, Transmission and Distribution, 152(2), 2005.
- X. Jin and R.G. Reynolds. Using Knowledge-Based Evolutionary Computation to Solve Nonlinear Constraint Optimization Problems: A Cultural Algorithm Approach. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, pages 1672-1678, 1999.
- X. Jin and R.G. Reynolds. Mining Knowledge in Large Scale Databases using Cultural Algorithms with Constraint Handling Mechanisms. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1498-1506, 2000.
- Y. Jin, M. Olhofer, and B. Sendhoff. Dynamic Weighted Aggregation for Evo- lutionary Multi-Objective Optimization: Why Does It Work and How? In Proceedings of the Genetic and Evolutionary Computation Conference, pages 1042-1049, 2001.
- Y. Jin, M. Olhofer, and B. Sendhoff. Dynamic Weighted Aggregation for Evolu- tionary Multi-Objective Optimization: Why does it Work and How? In Proceed- ings of the Genetic and Evolutionary Computation Conference, pages 1042-1049, 2001.
- D.S. Johnson and L.A. McGeoch. The Traveling Salesman Problem: A Case Study in Local Optimization. In J.K. Lenstra E.H.L. Aarts, editor, Local Search in Combinatorial Optimization, pages 215-310. John Wiley & Sons, 1997.
- J. Johnson and M. Sugisaka. Complexity Science for the Design of Swarm Robot Control Systems. In Proceedings of the Twenty-Sixth Annual Conference of the IEEE Industrial Electronics Society, volume 1, pages 695-700, 2000.
- J.A. Joines and C.R. Houck. On the Use of Non-Stationary Penalty Functions to Solve Nonlinear Constrained Optimization Problems with Genetic Algorithms. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 579- 584, 1994.
- I.T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, USA, 1986.
- T. Jones. Crossover, Macromutation, and Population-based Search. In L. Es- helman, editor, Proceedings of the Sixth International Conference on Genetic Algorithms, pages 73-80, San Francisco, C.A., 1995. Morgan Kaufmann.
- M.I. Jordan. Attractor Dynamics and Parallelism in a Connectionst Sequential Machine. In Proceedings of the Cognitive Science Conference, pages 531-546, 1986.
- R. Joshi and A.C. Sanderson. Minimal Representation Multisensor Fusion us- ing Differential Evolution. In Proceedings of the International Symposium on Computational Intelligence in Robotics and Automation, pages 255-273, 1997.
- C-F. Juang. A Hybrid of Genetic Algorithm and Particle Swarm Optimiza- tion for Recurrent Network Design. IEEE Transactions on Systems, Man, and Cybernetics -Part B: Cybernetics, 34(2):997-1006, 2003.
- J.H. Jun, D.W. Lee, and K.B. Sim. Realization of Cooperative Swarm Behavior in Distributed Autonomous Robotic Systems using Artificial Immune System. In Proceedings of IEEE International Conference on Systems, Man and Cyber- netics, volume 6, pages 614-619, 1999.
- L.P. Kaelbling, M.I. Littman, and A.W. Moore. Reinforcement Learning: A Survey. Journal of Artificial Intelligence Research, 4:237-285, 1996.
- T. Kaji. Approach by Ant Tabu Agents for Traveling Salesman Problem. In Proceedings of the IEEE International Conference on Systems, Man, and Cy- bernetics, volume 5, pages 3429-3434, 2001.
- R. Kamimura. Principal Hidden Unit Analysis: Generation of Simple Networks by Minimum Entropy Method. In Proceedings of the International Joint Con- ference on Neural Networks, volume 1, pages 317-320, 1993.
- R. Kamimura and S. Nakanishi. Weight Decay as a Process of Redundancy Reduction. In IEEE World Congress on Computational Intelligence, Proceedings of the International Joint Conference on Neural Networks, volume 3, pages 486- 491, 1994.
- J. Kamruzzaman, Y. Kumagai, and H. Hikita. Study on Minimal Net Size, Con- vergence Behavior and Generalization Ability of Heterogeneous Backpropagation Network. In I. Aleksander and J. Taylor, editors, Artificial Neural Networks, vol- ume 2, pages 203-206, 1992.
- S. Kannan, S.M.R. Slochanal, P. Subbaraj, and N.P. Padhy. Application of Par- ticle Swarm Optimization Technique and its Variants to Generation Expansion Planning. Electric Power Systems Research, 70(3):203-210, 2004.
- M.D. Kapadi and R.D. Gudi. Optimal Control of Fed-Batch Fermentation Involving Multiple Feeds using Differential Evolution. Process Biochemistry, 39(11):1709-1721, 2004.
- N. Karaboga, A. Kalinli, and D. Karaboga. Designing Digital IIR Filters us- ing Ant Colony Optimisation Algorithm. Engineering Applications of Artificial Intelligence, 17:301-309, 2004.
- S. Karner. Laws of Thought. Encyclopedia of Philosophy, 4:414-417, 1967.
- K-U. Kasemir and K. Betzler. Detecting Ellipses of Limited Eccentricity in Images with High Noise Levels. Image and Vision Computing, 21(10):221-227, 2003.
- S. Kaski, J. Venna, and T. Kohonen. Coloring that Reveals Cluster Structures in Multivariate Data. Australian Journal of Intelligent Information Processing Systems, 6:82-88, 2000.
- M. Kasper. Shape Optimization by Evolution Strategies. IEEE Transactions on Magnetics, 28(2):1556-1560, 1992.
- I.N. Kassabalidis, M.A. El-Shurkawi, R.J. Marks, L.S. Moulin, and A.P. Alves da Silva. Dynamic Security Border Identification using Enhanced Particle Swarm Optimization. IEEE Transactions on Power Systems, 17(3):723-729, 2002.
- Y. Katada, M. Svinin, Y. Matsumura, K. Ohkura, and K. Ueda. Stable Grasp Planning by Evolutionary Programming. IEEE Transactions on Industrial Elec- tronics, 48(4):749-756, 2001.
- J. Kennedy. The Particle Swarm: Social Adaptation of Knowledge. In Proceed- ings of the IEEE International Conference on Evolutionary Computation, pages 303-308, 1997.
- J. Kennedy. Small Worlds and Mega-Minds: Effects of Neighborhood Topol- ogy on Particle Swarm Performance. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, pages 1931-1938, 1999.
- J. Kennedy. Bare Bones Particle Swarms. In Proceedings of the IEEE Swarm Intelligence Symposium, pages 80-87, 2003.
- J. Kennedy and R.C. Eberhart. Particle Swarm Optimization. In Proceedings of the IEEE International Joint Conference on Neural Networks, pages 1942-1948, 1995.
- J. Kennedy and R.C. Eberhart. A Discrete Binary Version of the Particle Swarm Algorithm. In Proceedings of the World Multiconference on Systemics, Cyber- netics and Informatics, pages 4104-4109, 1997.
- J. Kennedy, R.C. Eberhart, and Y. Shi. Swarm Intelligence. Morgan Kaufmann, 2001.
- J. Kennedy and R. Mendes. Population Structure and Particle Performance. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 1671- 1676, 2002.
- J. Kennedy and R. Mendes. Neighborhood Topologies in Fully-Informed and Best-of-Neighborhood Particle Swarms. In Proceedings of the IEEE Interna- tional Workshop on Soft Computing in Industrial Applications, pages 45-50, 2003.
- J. Kennedy and W. Spears. Matching Algorithms to Problems: An Experimen- tal Test of the Particle Swarm and Some Genetic Algorithms on the Multimodal Problem Generator. In Proceedings of the IEEE Congress on Evolutionary Com- putation, pages 78-83, May 1998.
- R.H. Kewley and M.J. Embrechts. Computational Military Tactical Planning System. IEEE Transactions on Systems, Man and Cybernetics, 32(2):161-171, 2003.
- H-S. Kim, J-H. Park, and Y-K. Choi. Variable Structure Control of Brushless DC Motor using Evolution Strategy with Varying Search Space. In Proceedings of the IEEE International Conference on Evolutionary Computation, pages 764- 769, 1996.
- J. Kim and P.J. Bentley. Negative Selection and Niching by an Artificial Im- mune System for Network Intrusion Detection. In Genetic and Evolutionary Computation Conference, pages 149-158, 1999.
- J. Kim and P.J. Bentley. An Evaluation of Negative Selection in an Artificial Immune System for Network Intrusion Detection. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 1330-1337, 2001.
- J. Kim and P.J. Bentley. A Model of Gene Library Evolution in the Dynamic Clonal Selection Algorithm. In Proceedings of the First International Conference on Artificial Immune Systems, volume 1, pages 182-189, 2002.
- J. Kim and P.J. Bentley. Immune Memory in the Dynamic Clonal Selection Algorithm. In Proceedings of the First International Conference on Artificial Immune Systems, volume 1, pages 59-67, 2002.
- J. Kim and P.J. Bentley. Towards an Artificial Immune System for Network In- trusion Detection: An Investigation of Dynamic Clonal Selection. In Proceedings of Congress on Evolutionary Computation, pages 1015-1020, 2002.
- J-H. Kim, H-K. Chae, J-Y. Jeon, and S-W. Lee. Identification and Control of Systems with Friction using Accelerated Evolutionary Programming. IEEE Control Systems Magazine, 16(4):38-47, 1996.
- J-H. Kim and H. Myung. Evolutionary Programming Techniques for Con- strained Optimization Problems. IEEE Transactions on Evolutionary Compu- tation, 1(2):129-140, 1997.
- M-K. Kim, C-G. Lee, and H-K. Jung. Multiobjective Optimal Design of Three- phase Induction Motor using Improved Evolution Strategy. IEEE Transactions on Magnetics, 34(5):2980-2983, 1998.
- S. Kim and J-H. Kim. Optimal Trajectory Planning of a Redundant Manipulator using Evolutionary Programming. In Proceedings of the IEEE International Conference on Evolutionary Computation, pages 738-743, 1996.
- S. Kirkpatrick. Optimization by Simulated Annealing -Quantitative Studies. Journal of Statistical Physics, 34:975-986, 1984.
- S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by Simulated An- nealing. Science, 220:671-680, 1983.
- T. Knight and J. Timmis. A Multi-Layered Immune Inspired Approach to Data Mining. In Proceedings of the Fourth International Conference on Recent Ad- vances in Soft Computing, pages 266-271, 2002.
- J.D. Knowles and D.W. Corne. The Pareto Archived Evolution Strategy: A New Baseline Algorithm for Pareto Multiobjective Optimisation. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 98-105, 1999.
- C.A. Koay and D. Srinivasan. Particle Swarm Optimization-Based Approach for Generator Maintenance Scheduling. In Proceedings of the IEEE Swarm Intelligence Symposium, pages 167-173, 2003.
- K. Kohara. Selective Presentation Learning for Forecasting by Neural Networks. In International Workshop on Applications of Neural Networks in Telecommu- nications, pages 316-323, 1995.
- T. Kohonen. Self-Organization and Associative Memory. In Springer Series in Information Sciences, volume 8. Springer-Verlag, 1984.
- T. Kohonen. Context-Addressable Memories. Springer-Verlag, second edition, 1987.
- T. Kohonen. Self-Organizing Maps. Springer Series in Information Sciences, 1995.
- T. Kohonen. Self-Organizing Maps. Springer, second edition, 1997.
- T. Kohonen. Self-Organizing Maps. Springer, 2000.
- T.C. Koopmans and M.J. Beckman. Assignment Problems and the Location of Economic Activities. Econometrica, 25:53-76, 1957.
- J.R. Koza. Hierarchical Genetic Algorithms Operating on Populations of Com- puter Programs. In N.S. Sridharan, editor, Proceedings of the Eleventh Inter- national Joint Conference on Artificial Intelligence, volume 1, pages 768-774, 1989.
- J.R. Koza. Genetic programming: A Paradigm for Genetically Breeding Popu- lations of Computer Programs to Solve Problems. Technical Report STAN-CS- 90-1314, Department of Computer Science, Stanford University, 1990.
- J.R. Koza. Genetic Evolution and Co-Evolution of Computer Programs. In C. Taylor, C. Langton, J.D. Farmer, and S. Rasmussen, editors, Artificial Life II, volume X, pages 603-629. Addison-Wesley, Santa Fe Institute, New Mexico, USA, 1991.
- J.R. Koza. Genetic Evolution and Co-evolution of Game Strategies. In Pro- ceedings of the International Conference on Game Theory and Its Applications. Stony Brook, 1992.
- J.R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, 1992.
- J.R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, 1994.
- J.R. Koza and D. Andre. Automatic Discovery of Protein Motifs using Ge- netic Programming. In X. Yao, editor, Evolutionary Computation: Theory and Applications, Singapore, 1996. World Scientific.
- J.R. Koza and D. Andre. Classifying Protein Segments as Transmembrane Do- mains Using Architecture-Altering Operations in Genetic Programming. In P.J. Angeline and K.E. Kinnear (Jr), editors, Advances in Genetic Programming, chapter 8, volume 2, pages 155-176, Cambridge, M.A., 1996. MIT Press.
- J.R. Koza and J.P. Rice. Automatic Programming of Robots using Genetic Programming. In Proceedings of Tenth National Conference on Artificial Intel- ligence, pages 194-201. AAAI Press/MIT Press, 1992.
- S. Koziel and Z. Michalewicz. Evolutionary Algorithms, Homomorphous Map- pings, and Constrained Optimization. Evolutionary Computation, 7(1):19-44, 1999.
- O. Kramer, C-K. Ting, and H.K. Büning. A New Mutation Operator for Evolu- tion Strategies for Constrained Problems. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, pages 2600-2606, 2005.
- T. Krink, J.S. Vesterstrøm, and J. Riget. Particle Swarm Optimisation with Spa- tial Particle Extension. In Proceedings of the Fourth Congress on Evolutionary Computation, volume 2, pages 1474-1479, 2002.
- T. Krink and M. Løvberg. The Life Cycle Model: Combining Particle Swarm Optimisation, Genetic Algorithms and Hill Climbers. In Proceedings of the Parallel Problem Solving from Nature Conference, Lecture Notes in Computer Science, volume 2439, pages 621-630. Springer-Verlag, 2002.
- A. Krogh and J.A. Hertz. A Simple Weight Decay can Improve Generaliza- tion. In J. Moody, S.J Hanson, and R. Lippmann, editors, Advances in Neural Information Processing Systemsxi, volume 4, pages 950-957, 1992.
- F. Kursawe. Towards Self-Adapting Evolution Strategies. In Proceedings of the Second IEEE Conference on Evolutionary Computation, pages 283-288, 1995.
- D.G. Kurup, M. Himdi, and A. Rydberg. Synthesis of Uniform Amplitude Unequally Spaced Antenna Arrays using the Differential Evolution Algorithm. IEEE Transactions on Antennas and Propagation, 51(9):2210-2217, 2003.
- I. Kuscu and C. Thornton. Design of Artificial Neural Networks Using Genetic Algorithms: Review and Prospect. Technical report, Cognitive and Computing Sciences, University of Sussex, 1994.
- T-Y. Kwok and D-Y. Yeung. Constructive Feedforward Neural Networks for Re- gression Problems: A Survey. Technical Report HKUST-CS95-43, Department of Computer Science, The Hong Kong University of Science & Technology, 1995.
- A. Kyprianou, K. Worden, and M. Panet. Identification of Hysteretic Systems using the Differential Evolution Algorithm. Journal of Sound and Vibration, 248(2):289-314, 2001.
- K.J. Lafferty and A.J. Cunningham. A New Analysis of Allogeneic Interac- tions. In The Australian Journal of Experimental Biology and Medical Science, volume 53, pages 27-42, 1975.
- J. Lampinen. A Constraint Handling Approach for the Differential Evolution Algorithm. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1468-1473, 2002.
- J. Lampinen and I. Zelinka. Mixed Integer-Discrete-Continuous Optimization by Differential Evolution, Part I: The Optimization Method. In Proceedings of the Fifth International Mendel Conference on Soft Computing, pages 71-76, 1999.
- J. Lampinen and I. Zelinka. Mixed Variable Non-Linear Optimization by Dif- ferential Evolution. In Proceedings of the Second International Prediction Con- ference, pages 45-55, 1999.
- K.J. Lang, A.H. Waibel, and G.E. Hinton. A Time-Delay Neural Network Ar- chitecture for Isolated Word Recognition. Neural Networks, 3:33-43, 1990.
- R. Lange and R. Männer. Quantifying a Critical Training Set Size for Gen- eralization and Overfitting using Teacher Neural Networks. In International Conference on Artificial Neural Networks, volume 1, pages 497-500, 1994.
- S. Lange and T. Zeugmann. Incremental Learning from Positive Data. Journal of Computer and System Sciences, 53:88-103, 1996.
- E.C. Laskari, K.E. Parsopoulos, and M.N. Vrahatis. Particle Swarm Optimiza- tion for Integer programming. In Proceedings of the IEEE Congress on Evolu- tionary Computation, volume 2, pages 1582-1587, 2002.
- C-Y. Lee and X. Yao. Evolutionary Programming using Mutations Based on the Levy Probability Distribution. IEEE Transactions on Evolutionary Compu- tation, 8(2):1-13, 2004.
- S. Lee and R. Kill. Multilayer Feedforward Potential Funcion Networks. In Proceedings of the IEEE Second International Conference on Neural Networks, volume 1, pages 161-171, 1988.
- S-W. Lee, H-Byung Jun, and K-B. Sim. Performance Improvement of Evolution Strategies using Reinforcement Learning. In Proceedings of the IEEE Interna- tional Fuzzy Systems Conference, volume 2, pages 639-644, 1999.
- Z-J. Lee, C-Y. Lee, and F. Su. An Immunity-Based Ant Colony Optimization Algorithm for Solving Weapon-Target Assignment Problem. Applied Soft Com- puting, 2(1):39-47, 2002.
- L.R. Leerink, C. Lee Giles, B.G. Horne, and M.A. Jabri. Learning with Product Units. Advances in Neural Information Processing Systems, 7:537-544, 1995.
- W. Lei and W. Qidi. Ant System Algorithm for Optimization in Continuous Space. In Proceedings of the IEEE International Conference on Control Appli- cations, pages 395-400, 2001.
- W. Lei and W. Qidi. Further Example Study on Ant System Algorithm based Continuous Space Optimization. In Proceedings of the Fourth World Congress on Intelligent Control and Automation, pages 2541-2545, 2002.
- W. Lei and W. Qidi. Performance Evaluation of Ant System Optimization Process. In Proceedings of the Fourth World Congress on Intelligent Control and Automation, pages 2546-2550, 2002.
- D. Leitch and P.J. Probert. New Techniques for Genetic Development of a Class of Fuzzy Controllers. IEEE Transactions on Systems, Man and Cybernetics, 28(1):112-123, 1998.
- C. Lejewski and J. Lukasiewicz. Encyclopedia of Philosophy, 5:104-107, 1967.
- A.U. Levin, T.K. Leen, and J.E. Moody. Fast Pruning using Principal Compo- nents. In J.D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Systems, volume 6, pages 35-42, 1994.
- J. Li, H-Z. Liu, B. Yang, J-B. Yu, N. Xu, and C-H. Li. Application of an EACS Algorithm to Obstacle Detour Routing in VLSI Physical Design. In Proceedings of the International Conference on Machine Learning and Cybernetics, pages 1553-1558, 2003.
- X. Li. A Non-Dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization. In Proceedings of the Genetic and Evolutionary Computation Conference, Lecture Notes in Computer Science, volume 2723, pages 37-48. Springer-Verlag, 2003.
- X. Li and K.H. Dam. Comparing Particle Swarms for Tracking Extrema in Dynamic Environments. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, pages 1772-1779, 2003.
- X-L. Li, X-D. He, and S-M. Yaun. Learning Bayesian Networks Structures from Incomplete Data Based on Extending Evolutionary Programming. In Proceed- ings of the Fourth International Conference on Machine Learning and Cyber- netics, pages 2039-2043, 2005.
- Y. Li and S. Gong. Dynamic Ant Colony Optimisation for TSP. International Journal of Advanced Manufacturing Technology, 22(7-8):528-533, 2003.
- Y. Li, L. Rao, R. He, G. Xu, X. Gou, W. Yan, L. Wang, and S. Yang. Three EIT Approaches for Static Imaging of Head. In Proceedings of the Twenty-Sixth Annual International Conference of the Engineering in Medicine and Biology Sociery, volume 1, pages 578-581, 2004.
- Y. Li, L. Rao, R. He, G. Xu, Q. Wu, M. Ge, and W. Tan. Image Reconstruction of EIT using Differential Evolution Algorithm. In Proceedings of the Twenty- Fifth IEEE Annual International Conference on Engineering in Medicine and Biology Society, volume 2, pages 1011-1014, 2003.
- Y. Li, T-J. Wu, and D.J. Hill. An Accelerated Ant Colony Algorithm for Com- plex Nonlinear System Optimization. In Proceedings of the IEEE International Symposium on Intelligent Control, pages 709-713, 2003.
- K-H. Liang, X. Yao, and C. Newton. Dynamic Control of Adaptive Parame- ters in Evolutionary Programming. In Proceedings of the Second Asia-Pacific Conference on Simulated Evolution and Learning, Lecture Notes in Computer Science, volume 1585, pages 42-49, 1998.
- Y-C. Liang, S. Kultural-Konak, and A.E. Smith. Meta Heuristics for the Orien- teering Problem. In Proceedings of the IEEE Congress on Evolutionary Com- putation, volume 1, pages 384-389, May 2002.
- S-F. Lim and S-B. Ho. Dynamic Creation of Hidden Units with Selective Pruning in Backpropagation. In IEEE World Congress on Computational Intelligence, Proceedings of the International Joint Conference on Neural Networks, volume 3, pages 492-497, 1994.
- L. Lin. Self-Improving Reactive Agents Based on Reinforcement Learning, Plan- ning and Teaching. Machine Learning, 8:293-321, 1992.
- Y-C. Lin, K-S. Hwang, and F-S. Wang. Plant Scheduling and Planning using Mixed-Integer Hybrid Differential Evolution with Multiplier Updating. In Pro- ceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 593-600, 2000.
- Y-C. Lin, K-S. Hwang, and F-S. Wang. Hybrid Differential Evolution with Multiplier Updating Method for Nonlinear Constrained Optimization Problems. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 872-877, 2002.
- Y-C. Lin, K-S. Hwang, and F-S. Wang. A Mixed-Coding Scheme of Evolu- tionary Algorithms to Solve Mixed-Integer Nonlinear Programming Problems. Computers & Mathematics with Applications, 47(8-9):237-246, 2004.
- Y-C. Lin, F-S. Wang, and K-S. Hwang. A hybrid Method of Evolutionary Al- gorithms For Mixed-Integer Nonlinear Optimization Problems. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, 1999.
- Y. Liu, X. Yao, Q. Zhao, and T. Higuchi. Scaling Up Fast Evolutionary Pro- gramming with Cooperative Coevolution. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1101-1108, 2001.
- M.F. Møller. A Scaled Conjugate Gradient Algorithm for Fast Supervised Learn- ing. Neural Networks, 6:525-533, 1993.
- M. Løvberg. Improving Particle Swarm Optimization by Hybridization of Stochastic Search Heuristics and Self-Organized Criticality. Master's thesis, De- partment of Computer Science, University of Aarhus, Denmark, 2002.
- M. Løvberg and T. Krink. Extending Particle Swarm Optimisers with Self- Organized Criticality. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1588-1593, 2002.
- M. Løvberg, T.K. Rasmussen, and T. Krink. Hybrid Particle Swarm Optimiser with Breeding and Subpopulations. In Proceedings of the Genetic and Evolu- tionary Computation Conference, pages 469-476, 2001.
- J. Ludik and I. Cloete. Training Schedules for Improved Convergence. In IEEE International Joint Conference on Neural Networks, volume 1, pages 561-564, 1993.
- J. Ludik and I. Cloete. Incremental Increased Complexity Training. In European Symposium on Artificial Neural Networks, pages 161-165, 1994.
- G.F. Luger and W.A. Stubblefield. Artificial Intelligence, Structures and Strate- gies for Complex Problem Solving. Addison-Wesley, third edition, 1997.
- E. Lumer and B. Faieta. Diversity and Adaptation in Populations of Clustering Ants. In Proceedings of the Third International Conference on Simulation of Adaptive Behavior: From Animals to Animats, volume 3, pages 499-508. MIT Press, 1994.
- H.H. Lund, J. Hallam, and W-P. Lee. Evolving Robot Morphology. In Proceed- ings of the IEEE International Conference on Evolutionary Computation, pages 197-202, 1997.
- J.T. Ma and L.L. Lai. Determination of Operational Parameters of Electrical Machines using Evolutionary Programming. In Proceedings of the Seventh In- ternational Conference on Electrical Machines and Drives, pages 116-120, 1995.
- I.F. MacGill and R.J. Kaye. Decentralised Coordination of Power System Op- eration using Dual Evolutionary Programming. IEEE Transactions on Power Systems, 14(1):112-119, 1999.
- D.J.C. MacKay. Bayesian Methods for Adaptive Models. PhD thesis, California Institute of Technology, 1992.
- N.K. Madavan. Multiobjective Optimization using a Pareto Differential Evolu- tion Approach. In Proceedings of the IEEE Congress on Evolutionary Compu- tation, volume 2, pages 1145-1150, 2002.
- M.T. Madsen, R. Uppaluri, E.A. Hoffman, and G. McLennan. Pulmonary CT Image Classification using Evolutionary Programming. In Proceedings of the IEEE Nuclear Science Symposium, volume 2, pages 1179-1182, 1997.
- M. Maeterlinck. The Life of the White Ant. Dodd-Mead, New York, 1927.
- C.A. Magele, K. Preis, W. Renhart, R. Dyczij-Edlinger, and K.R. Richter. Higher Order Evolution Strategies for the Global Optimization of Electromag- netic Devices. IEEE Transactions on Magnetics, 29(2):1775-1778, 1993.
- G.D. Magoulas, V.P. Plagianakos, and M.N. Vrahatis. Adaptive Stepsize Algo- rithms for On-line Training of Neural Networks. Nonlinear Analysis: Theory, Methods and Applications (in press), 2001.
- G.D. Magoulas, V.P. Plagianakos, and M.N. Vrahatis. Hybrid methods using evolutionary algorithms for on-line training. In Proceedings of the International Joint Conference on Neural Networks, volume 3, pages 2218-2223, 2001.
- G.D. Magoulas, V.P. Plagianakos, and M.N. Vrahatis. Neural Network-Based Colonoscopic Diagnosis using On-Line Learning and Differential Evolution. Ap- plied Soft Computing, 4(4):369-379, 2004.
- G.D. Magoulas, M.N. Vrahatis, and G.S. Androulakis. Effective Backpropaga- tion Training with Variable Stepsize. Neural Networks, 10(1):69-82, 1997.
- S.W. Mahfoud. Niching Methods for Genetic Algorithms. PhD thesis, University of Illinois, Illinois, 1995.
- E.H. Mamdani and S. Assilian. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. International Journal of Man-Machine Studies, 7:1-13, 1975.
- V. Maniezzo and A Carbonaro. Ant Colony Optimization: An Overview. In C. Ribeiro, editor, Essays and Surveys in Metaheuristics, pages 21-44. Kluwer, 1999.
- V. Maniezzo and A. Carbonaro. An ANTS Heuristic for the Frequency Assign- ment Problem. Future Generation Computer Systems, 16(9):927-935, 2000.
- V. Maniezzo and A. Colorni. The Ant System Applied to the Quadratic As- signment Problem. IEEE Transactions on Knowledge and Data Engineering, 11(5):769-778, 1999.
- E.N. Marais. Die Siel van die Mier (The Soul of the Ant). J.L. van Schaik, Pretoria, South Africa, fifth edition, 1948. (first published in 1937).
- E.N. Marais. The Soul of the Ape. Hammersworth, London, second edition edition, 1969.
- E.N. Marais. The Soul of the White Ant. Human and Rousseau Publishers, Cape Town, 1970.
- C.E. Mariano and E. Morales. A Multiple Objective Ant-Q Algorithm for the Design of Water Distribution Irrigation Networks. Technical Report HC-9904, Instituto Mexicano de Technologiía del Agua, 1999.
- S. Markon, D.V. Arnold, T. Bäck, T. Beielstein, and H-G. Beyer. Thresholding -A Selection Operator for Noisy ES. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 465-472, 2001.
- M. Martin, B. Chopard, and P. Albuquerque. Formation of an Ant Cemetery: Swarm Intelligence or Statistical Accident? Future Generation Computer Sys- tems, 18(7):951-959, 2002.
- M. Mathur, S.B. Karale, S. Priye, V.K. Jayaraman, and B.D. Kulkarni. Ant Colony Approach to Continuous Function Optimization. Industrial Engineering Chemistry Research, 39(10):3814-3822, 2000.
- Y. Matsumura, K. Ohkura, and K. Ueda. Evolutionary Programming with Non- coding Segments for Realvalued Function Optimization. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 4, pages 242-247, 1999.
- Y. Matsumura, K. Ohkura, and K. Ueda. Evolutionary Dynamics of Evolution- ary Programming in Noisy Environment. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 17-24, 2001.
- P. Matzinger. The Danger Model in its Historical Context. Scandinavian Journal of Immunology, 54:4-9, 2001.
- P. Matzinger. The Real Function of the Immune System. http://cmmg.biosci.wayne.edu/asg/polly.html, 2004.
- H.A. Mayer and R. Schwaiger. Evolutionary and Coevolutionary Approaches to Time Series Prediction using Generalized Multi-Layer Perceptrons. In Proceed- ings of the IEEE Congress on Evolutionary Computation, volume 1, 1999.
- E. Mayr. Animal Species and Evolution. Belknap, Cambridge, MA, 1963.
- J.R. McDonnell and D. Waagen. Evolving Recurrent Perceptrons for Time-Series Modeling. IEEE Transactions on Neural Networks, 5(1):24-38, 1994.
- P.R. McMullen. An Ant Colony Optimization Approach to Addressing a JIT Sequencing Problem with Multiple Objectives. Artificial Intelligence in Engi- neering, 15(3):309-317, 2001.
- P. Meksangsouy and N. Chaiyaratana. DNA Fragment Assembly using an Ant Colony System Algorithm. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, pages 1756-1763, December 2003.
- C. Melhuish, O. Holland, and S. Hoddell. Collective Sorting and Segregation in Robots with Minimal Sensing. In Robotics and Autonomous Systems, volume 28, pages 207-216, 1998.
- R. Mendes, P. Cortez, M. Rocha, and J. Neves. Particle Swarms for Feedforward Neural Network Training. In Proceedings of the International Joint Conference on Neural Networks, pages 1895-1899, 2002.
- R. Mendes, J. Kennedy, and J. Neves. Watch thy Neighbor or How the Swarm can Learn from its Environment. In Proceedings of the IEEE Swarm Intelligence Symposium, pages 88-94, 2003.
- R. Mendes and A.S. Mohais. DynDE: A Differential Evolution for Dynamic Optimization Problems. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, pages 2808-2815, 2005.
- O.J. Mengshoel and D.E. Goldberg. Probabilistic Crowding: Deterministic Crowding with Probabilistic Replacement. In W. Banzhaf et al., editor, Pro- ceedings of the Genetic and Evolutionary Computation Conference 1999, pages 409-416, San Fransisco, USA, Morgan Kaufmann, 1999.
- D. Merkle, M. Middendorf, and H. Schmeck. Ant Colony Optimization for Resource-Constrained Project Scheduling. IEEE Transactions on Evolutionary Computation, 6(4):333-346, August 2002.
- L. Messerschmidt and A.P. Engelbrecht. Learning to Play Games using a PSO- Based Competitive Learning Approach. IEEE Transactions on Evolutionary Computation, 8(3):280-288, 2004.
- N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equations of State Calculations by Fast Computing Machines. Journal of Chem- ical Physics, 21:1087-1092, 1958.
- B.J. Meyer, H.S. Meij, S.V. Grey, and A.C. Meyer. Fisiologie van die mens - Biochemiese, fisiese en fisiologiese begrippe. Kagiso Tersier -Cape Town, first edition, 1996.
- Z. Michalewicz. Genetic Algorithms + Data Structures = Evolutionary Pro- grams. Springer, Berlin, 1992.
- Z. Michalewicz. A Survey of Constraint Handling Techniques in Evolutionary Computation Methods. In Proceedings of the Fourth Annual Conference on Evolutionary Programming, pages 135-155, 1995.
- Z. Michalewicz. Genetic Algorithms, Numerical Optimization, and Constraints. In Proceedings of the 6th International Conference on Genetic Algorithms, pages 151-158, 1995.
- Z. Michalewicz. Genetic Algorithms + Data Structures = Evolutionary Pro- grams. Springer, Berlin, third edition, 1996.
- Z. Michalewicz and N. Attia. Evolutionary Optimization of Constrained Prob- lems.
- In A.V. Sebald and L.J. Fogel, editors, Proceedings of the Third Annual Conference on Evolutionary Programming, pages 98-108, 1994.
- Z. Michalewicz and C. Janikow. Handling Constraints in Genetic Algorithms. In Proceedings of the Fourth International Conference on Genetic Algorithms, pages 151-157, 1991.
- Z. Michalewicz and G. Nazhiyath. Genocop III: A Co-Evolutionary Algorithm for Numerical Optimization Problems with Nonlinear Constraints. In Proceedings of the IEEE International Conference on Evolutionary Computation, volume 2, pages 647-651, 1995.
- Z. Michalewicz, G. Nazhiyath, and M. Michalewicz. A Note on the Usefulness of Geometrical Crossover for Numerical Optimization Problems. In L.J. Fogel, P.J. Angeline, and T. Bäck, editors, Proceedings of the Fifth Annual Conference on Evolutionary Programming, pages 305-312, Cambridge, M.A., 1996. MIT Press.
- R. Michel and M. Middendorf. An ACO Algorithm for the Shortest Common Supersequence Problem. In M. Dorigo D. Corne and F. Glover, editors, New Ideas in Optimization, pages 51-61. McGraw-Hill, 1999.
- M. Middendorf, F. Reischle, and H. Schmeck. Information Exchange in Multi Colony Ant Algorithms. In Proceedings of the Workshop on Bio-Inspired So- lutions to Parallel Processing Problems, Lecture Notes in Computer Science, volume 1800, pages 645-652. Springer-Verlag, 2000.
- B.L. Miller and M.J. Shaw. Genetic Algorithms with Dynamic Niche Sharing for Multimodal Function Optimization. In International Conference on Evolu- tionary Computation, pages 786-791, 1996.
- J.H. Miller. The Evolution of Automata in the Repeated Prisoner's Dilemma. PhD thesis, Department of Economics, University of Michigan, 1988.
- J.H. Miller. The Co-Evolution of Automata in the Repeated Prisoner's Dilemma. Technical report, Sante Fe Institute Report 89-003, 1989.
- V. Miranda and N. Fonseca. EPSO -Best-of-two-worlds Meta-heuristic Applied to Power System Problems. In Proceedings of the IEEE Congress on Evolution- ary Computation, volume 2, pages 1080-1085, 2002.
- W. Mo and S-U. Guan. Particle Swarm Assisted Incremental Evolution Strategy for Function Optimization. In Proceedings of the IEEE Conference on Cyber- netics and Intelligent Systems, pages 1-6, 2006.
- S. Moalla, A.M. Alimi, and N. Derbel. Design of Beta Neural Systems Using Differential Evolution. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, volume 3, 2002.
- C.G. Moles, J.R. Banga, and K. Keller. Solving Nonconvex Climate Con- trol Problems: Pitfalls and Algorithm Performances. Applied Soft Computing, 5(1):35-44, 2004.
- T. Mollestad. A Rough Set Approach to Data Mining: Extracting a Logic of Default Rules from Data. PhD thesis, Department of Computer Science, The Norwegian University of Science and Technology, 1997.
- N. Monmarché, M. Slimane, and G. Venturini. AntClass: Discovery of Clus- ters in Numeric Data by an Hybridization of an Ant Colony with the K-Means Algorithm. Technical report, Laboratoire d'Informatique, University of Tours, 1999.
- J. Moody and J. Utans. Architecture Selection Strategies for Neural Networks: Application to Corporate Bond Rating Prediction. In A.N. Refenes, editor, Neural Networks in the Capital Markets, pages 277-300. John Wiley & Sons, 1995.
- J.E. Moody. The Effective Number of Parameters: An Analysis of Generalization and Regularization in Nonlinear Learning Systems. In J. Moody, S.J. Hanson, and R. Lippmann, editors, Advances in Neural Information Processing Systems, volume 4, pages 847-854, 1992.
- J.E. Moody. Prediction Risk and Architecture Selection for Neural Networks. In V. Cherkassky, J.H. Friedman, and H. Wechsler, editors, From Statistics to Neural Networks: Theory and Pattern Recognition Applications, pages 147-165. Springer, 1994.
- J.E. Moody and C. Darken. Learning with Localized Receptive Fields. In D. Touretzky, G. Hinton, and T. Sejnowski, editors, Proceedings of the Connec- tionist Models Summer School, pages 133-143, San Mateo, C.A., 1989. Morgan Kaufmann.
- K. Mori, M. Tsukiyama, and T. Fukada. Immune Algorithm with Searching Diversity and Its Application to Resource Allocation Problems. Transactions of the Institute of Electrical Engineers of Japan, 113(10):872-878, 1993.
- N. Mori, S. Imanishi, H. Kita, and Y. Nishikawa. Adaptation to Changing Envi- ronments by Means of the Memory Based Thermodynamical Genetic Algorithm. In Proceedings of the Seventh International Conference on Genetic Algorithms, pages 299-306, 1997.
- P. Morillo, M. Fernández, and J.M. Orduña. An ACS-Based Partitioning Method for Distributed Virtual Environment Systems. In Proceedings of the Interna- tional Parallel and Distributed Processing Symposium, page 148, 2003.
- S. Mostaghim and J. Teich. Strategies for Finding Local Guides in Multi- Objective Particle Swarm Optimization (MOPSO). In Proceedings of the IEEE Swarm Intelligence Symposium, pages 26-33, 2003.
- S. Mostaghim and J. Teich. The Role of ε-dominance in Multi-objective Par- ticle Swarm Optimization Methods. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 1764-1771, 2003.
- M.C. Mozer and P. Smolensky. Skeletonization: A Technique for Trimming the Fat from a Network via Relevance Assessment. In D.S. Touretzky, editor, Advances in Neural Information Processing Systems, volume 1, pages 107-115, 1989.
- K-R. Müller, M. Finke, N. Murata, K. Schulten, and S. Amari. A Numerical Study on Learning Curves in Stochastic Multi-Layer Feed-Forward Networks. Neural Computation, 8(5):1085-1106, 1995.
- S.D. Müller, I.F. Sbalzarini, J.H. Walther, and P.D. Koumoutsakos. Evolution Strategies for the Optimization of Microdevices. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 302-309, 2001.
- S.D. Müller, N.N. Schraudolph, and P.D. Koumoutsakos. Step Size Adaptation in Evolution Strategies using Reinforcement Learning. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 151-156, 2002.
- Y. Murakami, H. Sato, and A. Namatame. Co-evolution in Negotiation Games. In Proceedings of the Fourth International Conference on Computational Intel- ligence and Multimedia Applications, pages 241-245, 2001.
- N. Murata, S. Yoshizawa, and S. Amari. A Criterion for Determining the Num- ber of Parameters in an Artificial Neural Network Model. In T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, editors, Artificial Neural Networks, pages 9-14. Elsevier Science Publishers, 1991.
- N. Murata, S. Yoshizawa, and S. Amari. Learning Curves, Model Selection and Complexity of Neural Networks. In C. Lee Giles, S.J. Hanson, and J.D. Cowan, editors, Advances in Neural Information Processing Systems, volume 5, pages 607-614, 1994.
- N. Murata, S. Yoshizawa, and S. Amari. Network Information Criterion -De- termining the Number of Hidden Units for an Artificial Neural Network Model. IEEE Transactions on Neural Networks, 5(6):865-872, 1994.
- S. Naka, T. Genji, T. Yura, and Y. Fukuyama. Practical Distribution State Esti- mation using Hybrid Particle Swarm Optimization. In IEEE Power Engineering Society Winter Meeting, volume 2, pages 815-820, 2001.
- D. Nam, Y.D. Seo, L-J. Park, C.H. Park, and B. Kim. Parameter Optimization of an On-Chip Voltage Reference Circuit using Evolutionary Programming. IEEE Transactions on Evolutionary Computation, 5(4):414-421, 2001.
- H. Narihisa, T. Taniguchi, M. Thuda, and K. Katayama. Efficiency of Parallel Exponential Evolutionary Programming. In Proceedings of the International Conference Workshop on Parallel Processing, pages 588-595, 2005.
- O. Nasraoui, D. Dasgupta, and F. Gonzalez. The Promise and Challenges of Ar- tificial Immune System Based Web Usage Mining: Preliminary Results. In Pro- ceedings of the Second SIAM International Conference on Data Mining, pages 29-39, 2002.
- O. Nasraoui, F. Gonzalez, C. Cardona, C. Rojas, and D. Dasgupta. A Scal- able Artificial Immune System Model for Dynamic Unsupervised Learning. In Proceedings of the Genetic and Evolutionary Computation Conference, Lecture Notes in Computer Science, volume 2723, pages 219-230. Springer-Verlag, 2003.
- D. Naug and R. Gadagkar. The Role of Age in Temporal Polyethism in a Primitively Eusocial Wasp. Behavioral Ecology and Sociobiology, 42:37-47, 1998.
- D. Naug and R. Gadagkar. Flexible Division of Labor Mediated by Social In- teractions in an Insect Colony -A Simulation Model. Journal of Theoretical Biology, 197:123-133, 1999.
- M. Neal. An Artificial Immune System for Continuous Analysis of Time-varying Data. In Proceedings of the First International Conference on Artificial Immune Systems, volume 1, pages 76-85, 2002.
- M. Neethling and A.P. Engelbrecht. Determining RNA Secondary Structure using Set-Based Particle Swarm Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 1670-1677, 2006.
- L. Nemes and T. Roska. A CNN Model of Oscillation and Chaos in Ant Colonies: A Case Study. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 42(10):741-745, 1995.
- N.J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, 1998.
- M. Niranjan and F. Fallside. Neural Networks and Radial Basis Functions in Classifying Static Speech Patterns. Technical Report CUEDIF-INFENG17R22, Engineering Department, Cambridge University, 1988.
- G. Nitschke. Co-Evolution of Cooperation in a Pursuit Evasion Game. In Pro- ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 2, pages 2037-2042, 2003.
- S.J. Nowlan. Maximum Likelihood Competitive Learning. In Advances in Infor- mation Processing Systems, volume 2, pages 574-582, San Mateo, C.A., 1990. Morgan Kaufmann.
- S.J. Nowlan and G.E. Hinton. Simplifying Neural Networks By Soft Weight- Sharing. Neural Computation, 4:473-493, 1992.
- N. Ohnishi, A. Okamoto, and N. Sugiem. Selective Presentation of Learning Samples for Efficient Learning in Multi-Layer Perceptron. In Proceedings of the IEEE International Joint Conference on Neural Networks, volume 1, pages 688-691, 1990.
- E. Oja. A Simplified Neuron Model as a Principal Component Analyzer. Journal of Mathematical Biology, 15:267-273, 1982.
- E. Oja and J. Karhuner. On Stochastic Approximation of the Eigenvectors and Eigenvalues of the Expectation of a Random Matrix. Journal of Mathematical Analysis and Applications, 104:69-84, 1985.
- M. Oltean, C. Grosan, A. Abraham, and M. Köppen. Multiobjective Optimiza- tion using Adaptive Pareto Archived Evolution Strategy. In Proceedings of the Fifth International Conference on Intelligent System Design and Applications, pages 558-563, 2005.
- M. Omran, A. Salman, and A.P. Engelbrecht. Image Classification using Particle Swarm Optimization. In Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning, pages 370-374, 2002.
- M.G. Omran, A.P Engelbrecht, and A. Salman. Image Classification using Parti- cle Swarm Optimization. In K.C. Tan, M.H. Lim, X. Yao, and L. Wang, editors, Recent Advances in Simulated Evolution and Learning, Advances in Natural Computation, volume 2, pages 347-365. World Scientific, 2004.
- M.G.H. Omran, A.P. Engelbrecht, and A. Salman. Differential Evolution Meth- ods for Unsupervised Image Classification. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 966-973, 2005.
- M.G.H. Omran, A.P. Engelbrecht, and A. Salman. Empirical Analysis of Self- Adaptive Differential Evolution. European Journal of Operational Research (in press), 2007.
- I. Ono and S. Kobayashi. A Real-Coded Genetic Algorithm for Function Opti- mization using Unimodal Normal Distribution Crossover. In Proceedings of the Seventh International Conference on Genetic Algorithms, pages 246-253, 1997.
- M. Opper. Learning and Generalization in a Two-Layer Neural Network: The Role of the Vapnik-Chervonenkis Dimension. Physical Review Letters, 72(13):2133-2166, 1994.
- G.B. Orr and T.K. Leen. Momentum and Optimal Stochastic Search. In M.C. Mozer, P. Smolensky, D.S. Touretzky, J.L. Elman, and A.S. Weigend, editors, Proceedings of the 1993 Connectionist Models Summer School, 1993.
- A. Ostermeier and N. Hansen. An Evolution Strategy with Coordinate System Invariant Adaptation of Arbitrary Normal Mutation Distributions within The Concept of Mutative Strategy Parameter Control. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 902-909, San Francisco, 1999. Morgan Kaufmann.
- M. Ostertag, E. Nock, and U. Kiencke. Optimization of Airbag Release Al- gorithms using Evolutionary Strategies. In Proceedings of the Fourth IEEE Conference on Control Applications, pages 275-280, 1995.
- D.A. Ostrowski and R.G. Reynolds. Knowledge-Based Software Testing Agent using Evolutionary Learning with Cultural Algorithms. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, pages 1657-1663, 1999.
- F.E.B. Otero, M.M.S. Silva, A.A. Freitas, and J.C. Nievola. Genetic Program- ming for Attribute Construction in Data Mining. In C. Ryan, M. Keijzer, R. Poli, T. Soule, E. Tsang, and E. Costa, editors, Proceedings of the Sixth European Conference on Genetic Programming, volume 2610 of Lecture Notes in Com- puter Science, pages 384-393. Springer-Verlag, 2003.
- R.H.J.M. Otten and L.P.P.P. van Ginneken. The Annealing Algorithm. Kluwer, 1989.
- P.S. Ow and T.E. Morton. Filtered Beam Search in Scheduling. International Journal of Production Research, 26:297-307, 1988.
- E. Ozcan and C.K. Mohan. Analysis of a Simple Particle Swarm Optimization System. In Intelligent Engineering Systems through Artificial Neural Networks, pages 253-258, 1998.
- E. Ozcan and C.K. Mohan. Particle Swarm Optimization: Surfing the Waves. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, July 1999.
- G. Pampará, A.P. Engelbrecht, and N. Franken. Binary Differential Evolu- tion. In IEEE World Congress on Computational Intelligence, Proceedings of the Congress on Evolutionary Computation, pages 1873-1879, 2006.
- E. Papacostantis, AP. Engelbrecht, and N. Franken. Coevolving Probabilistic Game Playing Agents using Particle Swarm Optimization Algorithms. In Pro- ceedings of the IEEE Evolutionary Computation in Games Symposium, pages 195-202, 2005.
- U. Paquet. Training Support Vector Machines with Particle Swarms. Master's thesis, Department of Computer Science, University of Pretoria, 2003.
- U. Paquet and A.P. Engelbrecht. Training Support Vector Machines with Par- ticle Swarms. In Proceedings of the IEEE International Joint Conference on Neural Networks, volume 2, pages 1593-1598, July 2003.
- J. Paredis. Coevolutionary Computation. Artificial Life, 2(4):355-375, 1995.
- G.B. Parker. The Co-Evolution of Model Parameters and Control Programs in Evolutionary Robotics. In Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, pages 162-167, 1999.
- K.E. Parsopoulos, D.K. Tasoulis, N.G. Pavlidis, V.P. Plagianakos, and M.N. Vrahatis. Vector Evaluated Differential Evolution for Multiobjective Optimiza- tion. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 204-211, 2004.
- K.E. Parsopoulos, D.K. Tasoulis, and M.N. Vrahatis. Multiobjective Optimiza- tion using Parallel Vector Evaluated Particle Swarm Optimization. In Pro- ceedings of the IASTED International Conference on Artificial Intelligence and Applications, volume 2, pages 823-828, 2004.
- K.E. Parsopoulos and M.N. Vrahatis. Particle Swarm Optimizer in Noisy and Continuously Changing Environments. In Proceedings of the IASTED Interna- tional Conference on Artificial Intelligence and Soft Computing, pages 289-294, 2001.
- K.E. Parsopoulos and M.N. Vrahatis. Initializing the Particle Swarm Optimizer using the Nonlinear Simplex Method. In N. Mastorakis A. Grmela, editor, Ad- vances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, pages 216-221, 2002.
- K.E. Parsopoulos and M.N. Vrahatis. Particle Swarm Optimization Method for Constrained Optimization Problems. In P. Sincak, J.Vascak, V. Kvasnicka, and J. Pospichal, editors, Intelligent Technologies --Theory and Applications: New Trends in Intelligent Technologies, pages 214-220. IOS Press, 2002.
- K.E. Parsopoulos and M.N. Vrahatis. Particle Swarm Optimization Method in Multiobjective Problems. In Proceedings of the ACM Symposium on Applied Computing, pages 603-607, 2002.
- K.E. Parsopoulos and M.N. Vrahatis. Recent Approaches to Global Optimiza- tion Problems through Particle Swarm Optimization. Natural Computing, 1(2- 3):235-306, 2002.
- J.M. Pasteels, J-L. Deneubourg, and S.Goss. Self-Organization Mechanisms in Ant Societies (I): Trail Recruitment to Newly Discovered Food Sources. Expe- rientia Suppl., 76:579-581, 1989.
- S. Paterlini and T. Krink. High Performance Clustering with Differential Evo- lution. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 2004-2011, 2004.
- Z. Pawlak. Rough Sets. International Journal of Computer and Information Sciences, 11:341-356, 1982.
- M.W. Pedersen, L.K. Hansen, and J. Larsen. Pruning with Generalization Based Weight Saliencies: γ OBD, γ OBS. In D.S. Touretzky, M.C. Mozer, and M.E. Hasselmo, editors, Advances in Neural Information Processing Systems, vol- ume 8, pages 521-528, 1996.
- E.S. Peer, F. van den Bergh, and A.P. Engelbrecht. Using Neighborhoods with the Guaranteed Convergence PSO. In Proceedings of the IEEE Swarm Intelli- gence Symposium, pages 235-242, 2003.
- C.A. Pena-Reyes and M. Sipper. Applying Fuzzy CoCo to Breast Cancer Di- agnosis. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1168-1175, 2000.
- B. Peng, R.G Reynolds, and J. Brewster. Cultural Swarms. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, pages 1965-1971, 2003.
- J. Peng, Y. Chen, and R.C. Eberhart. Battery Pack State of Charge Estimator Design using Computational Intelligence Approaches. In Proceedings of the Annual Battery Conference on Applications and Advances, pages 173-177, 2000.
- J. Peng and R.J. Williams. Incremental Multi-step Q-learning. In W. Cohen and H. Hirsh, editors, Proceedings of the Eleventh International Machine Learning Conference, pages 226-232, New Brunswick, N.J., 1994. Morgan Kaufmann.
- T. Peram, K. Veeramachaneni, and C.K. Mohan. Fitness-Distance-Ratio based Particle Swarm Optimization. In Proceedings of the IEEE Swarm Intelligence Symposium, pages 174-181, 2003.
- W. Perdrycz. Computational Intelligence: An Introduction. CRC Press, 1998.
- A.S. Perelson. Immune Network Theory. Immunological Review, 110:5-36, 1989.
- A.S. Perelson and G. Weisbuch. Immunology for Physicists. Reviews of Modern Physics, 69(4), 1997.
- T.K. Peters, H-E. Koralewski, and E.W. Zerbst. The Evolution Strategy - A Search Strategy Used in Individual Optimization of Electrical Parameters for Therapeutic Carotid Sinus Nerve Stimulation. IEEE Transactions on Biomedical Engineering, 36(7):668-675, 1989.
- D.A. Plaut, S. Nowlan, and G. Hinton. Experiments on Learning by Back Prop- agation. Technical Report CMU-CS-86-126, Department of Computer Science, Carnegie-Mellon University, 1986.
- M. Plutowski and H. White. Selecting Concise Training Sets from Clean Data. IEEE Transactions on Neural Networks, 4(2):305-318, 1993.
- T. Poggio and F. Girosi. A Theory of Networks for Approximation and Learning. Technical Report A.I. Memo 1140, MIT, Cambridge, M.A., 1989.
- L. Polkowski and A. Skowron. Rough Sets in Knowledge Discovery 2: Applica- tions, Case Studies, and Software Systems. Springer Verlag, 1998.
- J.B. Pollack and A.D. Blair. Co-Evolution in the Successful Learning of Backgammon Strategy. Machine Learning, 32(1):225-240, 1998.
- G. Potgieter. Mining Continuous Classes using Evolutionary Computing. Mas- ter's thesis, Department of Computer Science, University of Pretoria, 2003.
- M.A. Potter. The Design and Analysis of a Computational Model of Cooperative Coevolution. PhD thesis, George Mason University, Fairfax, V.A., USA, 1997.
- M.A. Potter and K. de Jong. A Cooperative Coevolutionary Approach to Func- tion Optimization. In Y. Davidor, H-P. Schwefel, and R. Männer, editors, Pro- ceedings of the Parallel Problem Solving from Nature, pages 249-257, Berlin, 1994. Springer.
- M.A. Potter and K. de Jong. Evolving Neural Networks with Collaborative Species. In Proceedings of the Summer Computer Simulation Conference, pages 340-345, 1995.
- M.A. Potter and K.A. de Jong. The Coevolution of Antibodies for Concept Learning. In Proceedings of the Fifth International Conference on Parallel Prob- lem Solving from Nature, pages 530-539, 1998.
- M.A. Potter, K.A. de Jong, and J.J. Grefenstette. A Coevolutionary Approach to Learning Sequential Decision Rules. In L. Eshelman, editor, Proceedings of the Sixth International Conference on Genetic Algorithms, pages 366-372, San Francisco, CA, 1995. Morgan Kaufmann.
- D. Powell and M.M. Skolnick. Using Genetic Algorithms in Engineering De- sign and Optimization with Nonlinear Constraints. In Proceedings of the Fifth International Conference on Genetic Algorithms, pages 424-430, 1993.
- S. Pramanik, R. Kozma, and D. Dasgupta. Dynamical Neuro-Representation of an Immune Model and its Application for Data Classification. In IEEE World Congress on Computational Intelligence, Proceedings of the International Joint Conference on Neural Networks, volume 1, pages 130-135, 2002.
- S.C. Pratt, E.B. Mallon, D.J.T. Sumpter, and N.R. Franks. Quorum Sensing, Recruitement, and Collective Decision-Making during Colony Emigration by the Ant Leptothorax albipennis. Behavioral Ecology and Sociobiology, 52:117-127, 2002.
- L. Prechelt. Adaptive Parameter Pruning in Neural Networks. Technical Report TR-95-009, International Computer Science Institute, Berkeley, California, 1995.
- K.V. Price. Differential Evolution vs. The Functions of The 2 nd ICEO. In Pro- ceedings of the IEEE International Conference on Evolutionary Computation, pages 153-157, 1997.
- K.V. Price, R.M. Storn, and J.A. Lampinen. Differential Evolution: A Practical Approach to Global Optimization. Springer, 2005.
- J.G. Proakis and M. Salehi. Communication System Engineering. Prentice Hall Publishers, second edition, 2002.
- A.K. Qin and P.N. Suganthan. Self-Adaptive Differential Evolution Algorithm for Numerical Optimization. In Proceedings of the IEEE Congress on Evolu- tionary Computation, volume 2, pages 1785-1791, 2005.
- A. Rae and S. Parameswaran. Application-Specific Heterogeneous Multipro- cessor Synthesis using Differential Evolution. In Proceedings of the Eleventh International Symposium On System Synthesis, pages 83-88, 1998.
- Y. Rahmat-Samii, D. Gies, and J. Robinson. Particle Swarm Optimization (PSO): A Novel Paradigm for Antenna Designs. The Radio Science Bulletin, 304:14-22, 2003.
- J. Rajesh, K. Gupta, H.S. Kusumakar, V.K. Jayaraman, and B.D. Kulkarni. Dynamic Optimization of Chemical Processes using Ant Colony Framework. Computers and Chemistry, 25:583-595, 2001.
- V. Ramos, C. Fernandes, and A.C. Rosa. Social Cognitive Maps, Swarm Collective Perception and Distributed Search on Dynamic Land- scapes. Technical report, Instituto Superior Técnico, Lisboa, Portugal, http://alfa.ist.utl.pt/~cvrm/staff/vramos/ref 58.html, 2005.
- V. Ramos and J.J. Merelo. Self-Organized Stigmergic Document Maps: Environ- ments as A Mechanism for Context Learning. In Proceedings of the First Spanish Conference on Evolutionary and Bio-Inspired Algorithms, pages 284-293, 2002.
- M. Randall. Heuristics for Ant Colony Optimisation using the Generalised As- signment Problem. In Proceedings of the IEEE Congress on Evolutionary Com- putation, volume 2, pages 1916-1923, 2004.
- T.K. Rasmussen and T. Krink. Improved Hidden Markov Model Training for Multiple Sequence Alignment by a Particle Swarm Optimization-Evolutionary Algorithm Hybrid. Biosystems, 72(1-2):5-17, 2003.
- A. Ratnaweera, S. Halgamuge, and H. Watson. Particle Swarm Optimization with Self-Adaptive Acceleration Coefficients. In Proceedings of the First Inter- national Conference on Fuzzy Systems and Knowledge Discovery, pages 264-268, 2003.
- A. Ratnaweera, H. Watson, and S.K. Halgamuge. Optimisation of Valve Timing Events of Internal Combustion Engines. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 4, pages 2411-2418, 2003.
- I. Rechenberg. Cybernetic Solution Path of an Experimental Problem. Technical report, Ministery of Aviation, 1965.
- I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der Biologischen Evolution. Frammann-Holzboog Verlag, Stuttgart, 1973.
- I. Rechenberg. Evolution Strategy. In J.M. Zurada, R. Marks II, and C. Robin- son, editors, Computational Intelligence: Imitating Life, pages 147-159, 1994.
- J. Reed, R. Toombs, and N.A. Barricelli. Simulation of Biological Evolution and Machine Learning. Journal of Theoretical Biology, 17:319-342, 1967.
- R. Reed. Pruning Algorithms -A Survey. IEEE Transactions on Neural Net- works, 4(5):740-747, 1993.
- R. Reed, R.J. Marks II, and S. Oh. Similarities of Error Regularization, Sigmoid Gain Scaling, Target Smoothing, and Training with Jitter. IEEE Transactions on Neural Networks, 6:529-538, 1995.
- J.-M. Renders and H. Bersini. Hybridizing Genetic Algorithms with Hill- Climbing Methods for Global Optimization: Two Possible Ways. In Proceed- ings of the First IEEE Conference on Evolutionary Computation, pages 312-317, 1994.
- R.G. Reynolds. An Adaptive Computer Model of the Evolution of Agriculture. PhD thesis, University of Michigan, Michigan, 1979.
- R.G. Reynolds. Version Space Controlled Genetic Algorithms. In Proceedings of the Second Annual Conference on Artificial Intelligence Simulation and Planning in High Autonomy Systems, pages 6-14, April 1991.
- R.G. Reynolds. Cultural Algorithms: Theory and Application. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 367-378. McGraw-Hill, 1999.
- R.G. Reynolds and H. Al-Shehri. The Use of Cultural Algorithms with Evolu- tionary Programming to Guide Decision Tree Induction in Large Databases. In IEEE World Congress on Computational Intelligence, Proceedings of the Inter- national Conference on Evolutionary Computation, pages 541-546, 1998.
- R.G. Reynolds and C. Chung. Fuzzy Approaches to Acquiring Experimental Knowledge in Cultural Algorithms. In Proceedings of the Nineth IEEE Inter- naitonal Conference on Tools with Artificial Intelligence, pages 260-267, 1997.
- R.G. Reynolds and C. Chung. Knowledge-based Self-Adaptation in Evolutionary Programming using Cultural Algorithms. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 71-76, 1997.
- R.G. Reynolds and B. Peng. Cultural Algorithms: Modeling of How Cultures Learn to Solve Problems. In Proceedings of the Sixteenth IEEE International Conference on Tools with Artificial Intelligence, pages 166-172, 2004.
- R.G. Reynolds, B. Peng, and R.S. Alomari. Cultural Evolution of Ensemble Learning for Problem Solving. In Proceedings of the IEEE Congress on Evolu- tionary Computation, pages 1119-1126, 2006.
- R.G. Reynolds and S.R. Rolnick. Learning the Parameters for a Gradient-Based Approach to Image Segmentation from The Results of a Region Growing Ap- proach using Cultural Algorithms. In Proceedings of the First International Symposium on Intelligence in Neural and Biological Systems, page 240, 1995.
- R.G. Reynolds and W. Sverdlik. Problem Solving using Cultural Algorithms. In IEEE World Congress on Computational Intelligence, Proceedings of the Inter- national Conference on Evolutionary Computation, pages 1004-1008, 1994.
- R.G. Reynolds and S. Zhu. Knowledge-Based Function Optimization using Fuzzy Cultural Algorithms with Evolutionary Programming. IEEE Transactions on Systems, Man, and Cybernetics, 31(1):1-18, 2001.
- J.T. Richardson, M.R. Palmer, G. Liepins, and M. Hilliard. Some Guidelines for Genetic Algorithms with Penalty Functions. In Proceedings of the Third International Conference on Genetic Algorithms, pages 191-197, 1989.
- M. Riedmiller and H. Braun. RPROP -A Fast Adaptive Learning Algorithm. In Proceedings of the Seventh International Symposium on Computer and Infor- mation Sciences, pages 279-285, 1992.
- M. Riedmiller and H. Braun. A Direct Adaptive Method for Faster Backpropa- gation Learning: The RPROP Algorithm. In Proceedings of the IEEE Interna- tional Conference on Neural Networks, pages 586-591, 1993.
- J. Riget and J.S. Vesterstrøm. A Diversity-Guided Particle Swarm Optimizer -The ARPSO. Technical Report 2002-02, Department of Computer Science, University of Aarhus, 2002.
- J. Riget and J.S. Vesterstrøm. Controlling Diversity in Particle Swarm Opti- mization. Master's thesis, University of Aarhus, Denmark, 2002.
- B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.
- A. Röbel. The Dynamic Pattern Selection Algorithm: Effective Training and Controlled Generalization of Backpropagation Neural Networks. Technical re- port, Institut für Angewandte Informatik, Technische Universität, Berlin, 1994.
- G.E. Robinson. Modulation of Alarm Pheromone Perception in the Honey Bee: Evidence for Division of Labour Based on Hormonally Regulated Response Thresholds. Journal of Computational Physiology A, 160:619, 1987.
- A. Rogers and A. Prügel-Bennett. Modelling the Dynamics of a Steady State Genetic Algorithm. In W. Banzhaf and C. Reeves, editors, Foundations of Ge- netic Algorithms, volume 5, pages 57-68, San Francisco, C.A., 1999. Morgan Kaufmann.
- J. Rönkkönen, S. Kukkonen, and K.V. Price. Real-Parameter Optimization with Differential Evolution. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 506-513, 2005.
- B.E. Rosen and J.M. Goodwin. Optimizing Neural Networks Using Very Fast Simulated Annealing. Neural, Parallel & Scientific Computations, 5(3):383-392, 1997.
- D.J. Rosenkrantz, R.E. Stearns, and P.M. Lewis. An Analysis of Several Heuris- tics for the Traveling Salesman Problem. SIAM Journal on Computing, 6:563- 581, 1977.
- C.D. Rosin. Coevolutionary Search Among Adversaries. PhD thesis, University of California at San Diego, 1997.
- C.D. Rosin and R.K. Belew. Methods for Competitive Co-evolution: Finding Opponents Worth Beating. In Larry Eshelman, editor, Proceedings of the Sixth International Conference on Genetic Algorithms, pages 373-380, San Francisco, CA, 1995. Morgan Kaufmann.
- C.D. Rosin and R.K. Belew. New Methods for Competitive Coevolution. Evo- lutionary Computation, 5(1):1-29, 1997.
- S. Rouwhorst and A.P. Engelbrecht. Searching the Forest: Using Decision Trees as Building Blocks for Evolutionary Search in Classification Databases. In In- ternational Congress on Evolutionary Computing, pages 633-638, 2000.
- S.E. Rouwhorst and A.P. Engelbrecht. Searching the Forest: Using Decision Trees as Building Blocks for Evolutionary Search in Classification Databases. In Proceedings of the IEEE International Conference on Evolutionary Computa- tion, 2000.
- O. Roux, C. Fonlupt, and E-G. Talbi. ANTabu. Technical Report LIL-98-04, Laboratoire d'Informatique du Littoral, Université du Littoral, Calais, France, 1998.
- O. Roux, C. Fonlupt, E-G. Talbi, and D. Robilliard. ANTabu -Enhanced Version. Technical Report LIL-99-01, Laboratoire d'Informatique du Littoral, Université du Littoral, Calais, France, 1999.
- G.A. Rummery and M. Niranjan. On-Line Q-Learning using Connectionist Systems. Technical Report CUED/F-INFENG/TR166, Cambridge University, 1994.
- T.P. Runarsson and X. Yao. Continuous Selection and Self-Adaptation Evolution Strategies. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 279-284, 2002.
- N. Rychtyckyj and R.G. Reynolds. Using Cultural Algorithms to Improve Perfor- mance in Semantic Networks. In Proceedings of the IEEE International Congress on Evolutionary Computation, volume 3, pages 1651-1656, July 1999.
- K. Rzadca and F. Seredynski. Heterogeneous Multiprocessor Scheduling with Differential Evolution. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, pages 2840-2847, 2005.
- K. Saastamoinen, J. Ketola, and E. Turunen. Defining Athlete's Anaerobic and Aerobic Thresholds by Using Similarity Measures and Differential Evolution. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, volume 2, pages 1331-1335, 2004.
- H. Sakanashi and Y. Kakazu. Co-Evolving Genetic Algorithm with Filtered Evaluation Function. In Proceedings of the IEEE Symposium on Emerging Tech- nologies and Factory Automation, pages 454-457, 1994.
- A. Sakurai. n-h-1 Networks Use No Less than nh+1 Examples, but Sometimes More. Proceedings of the IEEE, 3:936-941, 1992.
- S. Saleem and R.G. Reynolds. Cultural Algorithms in Dynamic Environments. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1513-1520, 2000.
- J. Salerno. Using the Particle Swarm Optimization Technique to Train a Re- current Neural Model. In Proceedings of the IEEE International Conference on Tools with Artificial Intelligence, pages 45-49, November 1997.
- A. Salman, I. Ahmad, and S. Al-Madani. Particle Swarm Optimization for Task Assignment Problem. Microprocessors and Microsystems, 26(8):363-371, 2002.
- R. Salomon and J.L. van Hemmen. Accelerating Backpropagation through Dy- namic Self-Adaptation. Neural Networks, 9(4):589-601, 1996.
- T. Sanger. Optimal Unsupervised Learning in a Single-Layer Linear Feedforward Neural Network. Neural Networks, 2:459-473, 1989.
- S. Sarafijanovic and J. Le Boudec. An Artificial Immune System for Misbehavior Detection in Mobile Ad-Hoc Networks with Virtual Thymus, Clustering, Danger Signal and Memory Detectors. In Proceedings of Third International Conference on Artificial Immune Systems, pages 342-356, 2004.
- H. Sarimveis and A. Nikolakopoulos. A Line Up Evolutionary Algorithm for Solving Nonlinear Constrained Optimization Problems. Computers & Opera- tions Research, 32(6):1499-1514, 2005.
- M.A. Sartori and P.J. Antsaklis. A Simple Method to Derive Bounds on the Size and to Train Multilayer Neural Networks. IEEE Transactions on Neural Networks, 2(4):467-471, 1991.
- J.D. Schaffer. Some Experiments in Machine Learning using Vector Evaluated Genetic Algorithms. PhD thesis, Vanderbilt University, 1984.
- J.D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In Proceedings of the First International Conference on Genetic Algorithms, pages 93-100, 1985.
- L. Schindler, D. Kerrigan, and J. Kelly. Understanding the Im- mune System. Science Behind the News -National Cancer Institute, http://newscenter.cancer.gov/cancertopics/understandingcancer/immunesystem, 2002.
- C. Schittenkopf, G. Deco, and W. Brauer. Two Strategies to Avoid Overfitting in Feedforward Neural Networks. Neural Networks, 10(30):505-516, 1997.
- H. Schmidt and G. Thierauf. A Combined Heuristic Optimization Technique. Advances in Engineering Software, 36(1):11-19, 2005.
- J.F. Schutte and A.A. Groenwold. A Study of Global Optimization Using Par- ticle Swarms. Journal of Global Optimization, 31(1):93-108, 2001.
- J.F. Schutte and A.A. Groenwold. Sizing Design of Truss Structures using Parti- cle Swarms. Structural and Multidisciplinary Optimization, 25(4):261-269, 2003.
- D.B. Schwartz, V.K. Samalam, S.A. Solla, and J.S. Denker. Exhaustive Learn- ing. Neural Computation, 2:374-385, 1990.
- H.-P. Schwefel. Evolutionsstrategie und numerische Optimierung. PhD thesis, Technical University Berlin, 1975.
- H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley, Chich- ester, U.K., 1981.
- H.-P Schwefel. Evolution and Optimum Seeking. Wiley, New York, 1995.
- B.R. Secrest. Travelling Salesman Problem for Surveillance Mission Planning using Particle Swarm Optimization. Master's thesis, School of Engineering and Management of the Air Force Institute of Technology, Air University, 2001.
- B.R. Secrest and G.B. Lamont. Visualizing Particle Swarm Optimization - Gaussian Particle Swarm Optimization. In Proceedings of the IEEE Swarm Intelligence Symposium, pages 198-204, 2003.
- T. Sejnowski. Storing Covariance with Nonlinearly Interacting Neurons. Journal of Mathematical Biology, 4:303-321, 1997.
- A.B. Sendova-Franks and N.R. Franks. Self-Assembly, Self-Organization and Division of Labour. Philosophical Transactions of the Royal Society of London, 354:1395-1405, 1999.
- P.S. Sensarma, M. Rahmani, and A. Carvalho. A Comprehensive Method for Op- timal Expansion Planning using Particle Swarm Optimization. In Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, volume 2, pages 1317-1322, 2002.
- M. Settles and B. Rylander. Neural Network Learning using Particle Swarm Optimizers. Advances in Information Science and Soft Computing, pages 224- 226, 2002.
- H.S. Seung, M. Opper, and H. Sompolinsky. Query by Committee. In Proceed- ings of the Fifth Annual ACM Workshop on Computational Learning Theory, pages 287-299, 1992.
- S. Sevenster and A.P. Engelbrecht. GARTNet: A Genetic Algorithm for Routing in Telecommunications Networks. In Proceedings of CESA96 IMACS Multicon- ference on Computational Engineering in Systems Applications, Symposium on Control, Optimization and Supervision, volume 2, pages 1106-1111, 1996.
- L. Shi, G. Xu, and Z. Hua. A New Heuristic Evolutionary Programming and its Application in Solution of the Optimal Power Flow. I. Primary Principle of Heuristic Evolutionary Programming. In Proceedings of the International Conference on Power System Technology, volume 1, pages 762-770, 1998.
- Y. Shi and R.C. Eberhart. A Modified Particle Swarm Optimizer. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 69-73, 1998.
- Y. Shi and R.C. Eberhart. Parameter Selection in Particle Swarm Optimization. In Proceedings of the Seventh Annual Conference on Evolutionary Programming, pages 591-600, 1998.
- Y. Shi and R.C. Eberhart. Empirical Study of Particle Swarm Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, pages 1945-1950, 1999.
- Y. Shi and R.C. Eberhart. Fuzzy Adaptive Particle Swarm Optimization. In Pro- ceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 101-106, 2001.
- Y. Shi and R.A. Krohling. Co-Evolutionary Particle Swarm Optimization to Solve Min-Max Problems. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1682-1687, 2002.
- O.M. Shir and T Bäck. Dynamic Niching in Evolution Strategies with Covari- ance Matrix Adaptation. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, pages 2584-2591, 2005.
- G.M. Shiraz, R.E. Marks, D.F. Midgley, and L.G. Cooper. Using Genetic Algo- rithms to Breed Competitive Marketing Strategies. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, volume 3, pages 2367-2372, 1998.
- A. Shmygelska and H.H. Hoos. An Improved Ant Colony Optimisation Algo- rithm for the 2D HP Protein Folding Problem. In Proceedings of the Canadian Conference on Artificial Intelligence, pages 400-407, 2004.
- A. Sierra and A. Echeverría. The Polar Evolution Strategy. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 2301-2306, 2006.
- J. Sietsma and R.J.F. Dow. Creating Artificial Neural Networks that Generalize. Neural Networks, 4:67-79, 1991.
- A. Silva, A. Neves, and E. Costa. An Empirical Comparison of Particle Swarm and Predator Prey Optimisation. In Proceedings of the Thirteenth Irish Confer- ence on Artificial Intelligence and Cognitive Science, Lecture Notes in Artificial Intelligence, volume 2464, pages 103-110. Springer-Verlag, 2002.
- K.M. Sim and W.H. Sun. Multiple Ant-Colony Optimization for Network Rout- ing. In Proceedings of the First International Symposium on Cyber Worlds, pages 277-281, 2002.
- K. Sims. Artificial Evolution for Computer Graphics. Computer Graphics, 25(4):319-328, 1991.
- K. Sims. Evolving Virtual Creatures. In Computer Graphics, Annual Conference Series, ACM SIGGRAPH, pages 15-22, 1994.
- N. Sinha and B. Purkayastha. PSO Embedded Evolutionary Programming Tech- nique for Nonconvex economic Load Dispatch. In Proceedings of the IEEE Power Systems Conference and Exposition, volume 1, pages 66-71, 2004.
- N. Sinha, R. Shakrabarti, and P.K. Chattopadhyay. Fast Evolutionary Program- ming Techniques for Short-Term Hydrothermal Scheduling. IEEE Transactions on Power Systems, 18(1):214-220, 2003.
- P. Slade and T.D. Gedeon. Bimodal Distribution Removal. In J. Mira, J. Cabestany, and A. Prieto, editors, Proceedings of the International Workshop on Artificial Neural Networks, pages 249-254, Berlin, 1993. Springer-Verlag.
- J. Smith and T.C. Fogarty. Self Adaptation of Mutation Rates in A Steady State Genetic Algorithm. In Proceedings of the IEEE International Conference on Evolutionary Computation, pages 318-323, 1996.
- J. Smith and F. Vavak. Replacement Strategies in Steady State Genetic Al- gorithms: Static Environments. Technical report, Intelligent Computer System Centre, University of the West of England, Bristol, England, 1998.
- J.A. Snyman. A New and Dynamic Method for Unconstrained Minimization. Applied Mathematical Modelling, 6:449-462, 1882.
- J.A. Snyman. An Improved Version of the Original LeapFrog Dynamic Method for Unconstrained Minimization: LFOP1(b). Applied Mathematical Modelling, 7:216-218, 1983.
- K. Socha. The Influence of Run-Time Limits on Choosing Ant System Parame- ters. In Proceedings of GECCO 2003 --Genetic and Evolutionary Computation Conference, volume 2723, pages 49-60, 2003.
- F.J. Solis and R.J.-B. Wets. Minimization by Random Search Techniques. Math- ematical Operations Research, 6:19-30, 1981.
- A. Somayaji and S. Forrest. Automated Response Using System-Call Delays. In Proceedings of the Nineth Unisex Security Symposium, pages 185-197, 2000.
- A. Somayaji, S. Hofmeyr, and S. Forrest. Principles of a Computer Immune System. In Proceedings of the ACM New Security Paradigms Workshop, pages 75-82, 1997.
- T. Sousa, A. Neves, and A. Silva. Swarm Optimisation as a New Tool for Data Mining. In Proceedings of the Parallel and Distributed Processing Symposium, pages 144-149, 2003.
- J.C. Spall. Introduction to Stochastic Search and Optimization. Wiley Inter- Science, 2003.
- N. Srinivas and K. Deb. Multiobjective Optimization using Nondominated Sort- ing in Genetic Algorithms. Evolutionary Computation, 2(3):221-248, 1991.
- A. Stacey, M. Jancic, and I. Grundy. Particle Swarm Optimization with Mu- tation. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1425-1430, 2003.
- J.M. Steppe, K.W. Bauer, and S.K. Rogers. Integrated Feature and Architecture Selection. IEEE Transactions on Neural Networks, 7(4):1007-1014, 1996.
- R. Storn. Differential Evolution Design of an IIR-Filter. In Proceedings of the IEEE International Conference on Evolutionary Computation, pages 268-273, 1996.
- R. Storn. On the Usage of Differential Evolution for Function Optimization. In Proceedings of the Biennial Conference of the North American Fuzzy Informa- tion Processing Society, pages 519-523, 1996.
- R. Storn. System Design by Constraint Adaptation and Differential Evolution. IEEE Transactions on Evolutionary Computation, 3(1):22-34, 1999.
- R. Storn and K. Price. Differential Evolution -A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4):431-359, 1997.
- T. Stützle. Parallelization Strategies for Ant Colony Optimization. In A.E. Eiben, T. Bäck, M. Schoenauer, and H-P. Schwefel, editors, Proceedings of the Parallel Problem Solving from Nature Conference, Lecture Notes in Computer Science, volume 1498, pages 722-731. Springer-Verlag, 1998.
- T. Stützle and H. Hoos. MAX-MIN Ant System and Local Search for The Trav- eling Salesman Problem. In Proceedings of the IEEE International Conference on Evolutionary Computation, pages 309-314, 1997.
- T. Stützle and H.H. Hoos. MAX-MIN Ant System. Future Generation Computer Systems, 16(8):889-914, 2000.
- C-T. Su and C-S. Lee. Network Reconfiguration of Distribution Systems using Improved Mixed-Integer Hybrid Differential Evolution. IEEE Transactions on Power Delivery, 18(3):1022-1027, 2002.
- M.C. Su, T.A. Liu, and H.T. Chang. An Efficient Initialization Scheme for the Self-Organizing Feature Map Algorithm. In Proceedings of the IEEE Interna- tional Joint Conference in Neural Networks, volume 3, pages 1906-1910, 1999.
- G.A. Suer. Evolutionary Programming for Designing Manufacturing Cells. In Proceedings of the IEEE International Conference on Evolutionary Computa- tion, pages 379-384, 1997.
- P.N. Suganthan. Particle Swarm Optimiser with Neighborhood Operator. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 1958- 1962, 1999.
- R. Sun, S. Tatsumo, and Z. Gang. Multiagent Reinforcement Learning Method with an Improved Ant Colony System. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, volume 3, pages 1612-1617, 2001.
- K.K. Sung and P. Niyogi. A Formulation for Active Learning with Applications to Object Detection. Technical Report 1438, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1996.
- R.S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis, University of Massachusetts, Amherst, 1984.
- R.S. Sutton. Learning to Predict by the Method of Temporal Differences. Ma- chine Learning, 3(1):9-44, 1988.
- R.S. Sutton. Implementation Details of the TD(λ) Procedure for the Case of Vector Predictions and Backpropagation. Technical Report TN87-509.1, GTE Laboratories, 1989.
- W. Sverdlik, R.G. Reynolds, and E. Zannoni. HYBAL: A Self-Tuning Algorithm for Concept Learning in Highly Autonomous Systems. In Proceedings of the Third Annual Conference on Artificial Intelligence, Simulation, and Planning in High Autonomy Systems, pages 15-22, 1992.
- A.K. Swain and A.S. Morris. A Novel Hybrid Evolutionary Programming Method for Function Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 699-705, 2000.
- G. Syswerda. Uniform Crossover in Genetic Algorithms. In Proceedings of the Third International Conference on Genetic Algorithms, pages 2-9, 1989.
- G. Syswerda. Schedule Optimization using Genetic Algorithms. In L. Davis, editor, Handbook of Genetic Algorithms, pages 331-349. International Thomson Computer Press, 1991.
- M-J. Tahk and B-C. Sun. Coevolutionary Augmented Lagrangian Methods for Constrained Optimization. IEEE Transactions on Evolutionary Computation, 4(2):114-124, 2000.
- É.D. Taillard. FANT: Fast Ant System. Technical Report IDSIA 46-98, IDSIA, Lugano, Switzerland, 1998.
- É.D. Taillard and L.M. Gambardella. Adaptive Memories for the Quadratic As- signment Problem. Technical Report IDSIA-87-97, IDSIA, Lugano, Switzerland, 1997.
- T. Takagi and M. Sugeno. Fuzzy Identification of Systems and its Application to Modeling and Control. IEEE Transactions on Systems, Man, and Cybernetics, 15(1):116-132, 1985.
- T. Takahashi. Principal Component Analysis is a Group Action of SO(N) which Minimizes an Entropy Function. In Proceedings of the International Joint Con- ference on Neural Networks, volume 1, pages 355-358, 1993.
- E-G. Talbi, O. Rouz, C. Fonlupt, and D. Robillard. Parallel Ant Colonies for the quadratic assignment problem. Future Generation Computer Systems, 14(4):441-449, 2001.
- H. Talbi and M. Batouche. Hybrid Particle Swarm with Differential Evolution for Multimodal Image Registration. In Proceedings of the IEEE International Conference on Industrial Technology, volume 3, pages 1567-1573, 2004.
- S. Tamura, M. Tateishi, M. Matumoto, and S. Akita. Determination of the Number of Redundant Hidden Units in a Three-layer Feed-Forward Neural Net- work. In Proceedings of the International Joint Conference on Neural Networks, volume 1, pages 335-338, 1993.
- V. Tandon, H. El-Mounayri, and H. Kishawy. NC End Milling Optimization using Evolutionary Computation. International Journal of Machine Tools and Manufacture, 42(5):595-605, 2002.
- O. Tezak, D. Dolinar, and M. Milanovic. Snubber Design Approach for dc-dc Converter Based on Differential Evolution Method. In Proceedings of the Eight IEEE International Workshop on Advanced Motion Control, pages 87-91, 2004.
- G. Théraulaz and E. Bonabeau. A Brief History of Stigmergy. Artificial Life, 5:97-116, 1999.
- G. Théraulaz, E. Bonabeau, and J-L. Deneubourg. Response Threshold Rein- forcement and Division of Labour in Insect Societies. Proceedings of the Royal Society of London, Series B, 265:327-332, 1998.
- G. Théraulaz, S. Goss, J. Gervet, and J-L. Deneubourg. Task Differentation in Polists Wasp Colonies: A Model for Self-Organizing of Robots. In J-A. Meyer and S.W. Wilson, editors, Proceedings of the First International Conference on Simulation of Adaptive Behavior: From Animals to Animats, pages 346-355. MIT Press, 1991.
- H. Thiele. Fuzzy Rough Sets versus Rough Fuzzy Sets -An Interpretation and Comparative Study using Concepts of Modal Logics. Technical Report CI-30/98, University of Dortmund, 1998.
- H.H. Thodberg. Improving Generalization of Neural Networks through Pruning. International Journal of Neural Systems, 1(4):317-326, 1991.
- J. Timmis. Artificial Immune Systems: A Novel Data Analysis Technique In- spired by the Immune Network Theory. PhD thesis, University of Wales, Aberys- twyth, August 2000.
- J. Timmis and M. Neal. A Resource Limited Artificial Immune System for Data Analysis. In Research and Development in Intelligent Systems, volume 14, pages 19-32, Cambridge, UK, 2000. Springer.
- J. Timmis, M. Neal, and J. Hunt. Data Analysis using Artificial Immune Sys- tems, Cluster Analysis and Kohonen Networks: Some Comparisons. In Pro- ceedings of IEEE International Conference on Systems, Man and Cybernetics, volume 3, pages 922-927, 1999.
- F. Tin-Loi and N.S. Que. Identification of Cohesive Crack Fracture Parameters by Evolutionary Search. Computer Methods in Applied Mechanics and Engi- neering, 191(49-50):5741-5760, 2002.
- S.J.P. Todd and W. Latham. Mutator, A Subjective Human Interface for Evolu- tion of Computer Sculptures. Technical report, IBM United Kingdom Scientific Centre Report 248, 1991.
- J.F.A. Traniello and R.B. Rosengaus. Ecology, Evolution and Division of Labour in Social Insects. Animal Behaviour, 53:209-213, 1997.
- I.C. Trelea. The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection. Information Processing Letters, 85(6):317-325, 2003.
- C-F. Tsai, C-W. Tsai, and C-C. Tseng. A Novel and Efficient Ant-Based Al- gorithm for Solving Traveling Salesman Problem. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 2, pages 320-325, 2002.
- C-F. Tsai, C-W. Tsai, H-C. Wu, and T. Yang. ACODF: A Novel Data Clustering Approach for Data Mining in Large Databases. Journal of Systems and Software, 73:133-145, 2004.
- D. Tsou and C. MacNish. Adaptive Particle Swarm Optimisation for High- Dimensional Highly Convex Search Spaces. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 783-789, 2003.
- Y. Tsujimura, Y. Mafune, and M. Gen. Introducing Co-Evolution and Sub- Evolution Processes into Genetic Algorithm for Job-Shop Scheduling. In Pro- ceedings of the Twenty-Sixth Annual Conference of the IEEE Industrial Elec- tronics Society, volume 4, pages 2827-2830, 2000.
- T. Tsukada, T. Tamura, S. Kitagawa, and Y. Fukuyama. Optimal Operational Planning for Cogeneration System using Particle Swarm Optimization. In Pro- ceedings of the IEEE Swarm Intelligence Symposium, pages 138-143, 2003.
- S. Tsutsui and D.E. Goldberg. Simplex Crossover and Linkage Identification: Single-Stage Evolution vs. Multi-Stage Evolution. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 974-979, 2002.
- A.M. Turing. Computing Machinery and Intelligence. Mind, 59:433-460, 1950.
- E. Uchibe, M. Nakamura, and M. Asada. Co-Evolution for Cooperative Be- havior Acquisition in a Multiple Mobile Robot Environment. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 1, pages 425-430, 1998.
- H. Ulmer, F. Streichert, and A. Zell. Evolution Strategies Assisted by Gaussian Processes with Improved Pre-Selection Criterion. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 692-699, 2003.
- R.K. Ursem. Diversity-Guided Evolutionary Algorithms. In Proceedings of the Parallel Problem Solving from Nature Conference, pages 462-471, 2002.
- F van den Bergh. Particle Swarm Weight Initialization in Multi-Layer Perceptron Artificial Neural Networks. In Proceedings of the International Conference on Artificial Intelligence, pages 42-45, 1999.
- F. van den Bergh. An Analysis of Particle Swarm Optimizers. PhD thesis, Department of Computer Science, University of Pretoria, Pretoria, South Africa, 2002.
- F. van den Bergh and A.P. Engelbrecht. Cooperative Learning in Neural Net- works using Particle Swarm Optimizers. South African Computer Journal, 26:84- 90, 2000.
- F. van den Bergh and A.P Engelbrecht. Effects of Swarm Size on Cooperative Particle Swarm Optimisers. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 892-899, 2001.
- F. van den Bergh and A.P. Engelbrecht. Training Product Unit Networks using Cooperative Particle Swarm Optimisers. In Proceedings of the IEEE Interna- tional Joint Conference on Neural Networks, volume 1, pages 126-131, 2001.
- F. van den Bergh and A.P Engelbrecht. Training Product Unit Networks using Cooperative Particle Swarm Optimisers. In Proceedings of the IEEE Interna- tional Joint Conference on Neural Networks, volume 1, pages 126-131, July 2001.
- F. van den Bergh and A.P. Engelbrecht. A New Locally Convergent Particle Swarm Optimizer. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pages 96-101, 2002.
- F. van den Bergh and A.P. Engelbrecht. A Cooperative Approach to Parti- cle Swarm Optimization. IEEE Transactions on Evolutionary Computation, 8(3):225-239, 2004.
- F. van den Bergh and A.P. Engelbrecht. A Study of Particle Swarm Optimization Particle Trajectories. Information Sciences, 176(8):937-971, 2006.
- G.N. Varela and M.C. Sinclair. Ant Colony Optimisation for Virtual- Wavelength-Path Routing and Wavelength Allocation. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, page 1816, July 1999.
- F. Vavak and T.C. Fogarty. Comparison of Steady State and Generational Ge- netic Algorithms for Use in Nonstationary Environments. In Proceedings of the IEEE International Conference on Evolutionary Computation, pages 192-195, 1996.
- F. Vavak, K. Jukes, and T.C. Fogarty. Learning the Local Search Range for Genetic Optimisation in Nonstationary Environments. In Proceedings of the IEEE International Conference on Evolutionary Computation, pages 355-360, 1997.
- G. Venter and J. Sobieszczanski-Sobieski. Multidisciplinary Optimization of a Transport Aircraft Wing using Particle Swarm Optimization. Structural and Multidisciplinary Optimization, 26(1-2):121-131, 2003.
- G. Venter and J. Sobieszczanski-Sobieski. Particle Swarm Optimization. Journal for the American Institute of Aeronautics and Astronautics, 41(8):1583-1589, 2003.
- J. Vesterstrøm and R. Thomsen. A Comparative Study of Differential Evolu- tion, Particle Swarm Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1980-1987, 2004.
- J.S. Vesterstrøm and J. Riget. Particle Swarms: Extensions for Improved Local, Multi-Modal, and Dynamic Search in Numerical Optimization. Master's thesis, Department of Computer Science, University of Aarhus, 2002.
- J.S. Vesterstrøm, J. Riget, and T. Krink. Division of Labor in Particle Swarm Optimization. In Proceedings of the IEEE Congress on Evolutionary Computa- tion, pages 1570-1575, 2002.
- H.L. Viktor, A.P. Engelbrecht, and I. Cloete. Reduction of Symbolic Rules from Artificial Neural Networks using Sensitivity Analysis. In Proceedings of the IEEE International Conference on Neural Networks, pages 1788-1793, 1995.
- T.P. Vogl, J.K. Mangis, A.K. Rigler, W.T. Zink, and D.L. Alken. Accelerat- ing the Convergence of the Back-Propagation Method. Biological Cybernetics, 59:257-263, 1988.
- M. Vogt. Combination of Radial Basis Function Neural Networks with Opti- mized Learning Vector Quantization. In Proceedings of the IEEE International Conference on Neural Networks, volume 3, pages 1841-1846, New York, 1993.
- V.P. Volny and D.M. Gordon. Genetic Basis for Queen-Worker Dimorphism in a Social Insect. Proceedings of the National Academy of Sciences of the United States of America, 99(9):6108-6111, 2002.
- J. Vondras and P. Martinek. Multi-Criterion Filter Design via Differential Evo- lution Method for Function Minimization. In Proceedings of the First IEEE International Conference on Circuits and Systems for Communications, pages 106-109, 2002.
- F-S. Wang and J-P. Chiou. Differential Evolution for Dynamic Optimization of Differential-Algebraic Systems. In Proceedings of the IEEE International Conference on Evolutionary Computation, pages 531-536, 1997.
- F-S. Wang and H-J. Jang. Parameter Estimation of a Bioreaction Model by Hybrid Differential Evolution. In Proceedings of the IEEE Congress on Evolu- tionary Computation, volume 1, pages 410-417, 2000.
- K-P. Wang, L. Huang, C-G. Zhou, and W. Pang. Particle Swarm Optimization for Travelling Salesman Problem. In Proceedings of International Conference on Machine Learning and Cybernetics, pages 1583-1585, 2003.
- L. Wang, X-P. Wang, and Q-D. Wu. Ant System Algorithm Based Rosenbrock Function Optimization in Multi-Dimension Space. In Proceedings of the First International Conference on Machine Learning and Cybernetics, pages 710-714, 2002.
- L.X. Wang and J.M. Mendel. Generating Fuzzy Rules by Learning from Exam- ples. IEEE Transactions on Systems, Man, and Cybernetics, 22(6):1413-1426, 1992.
- X. Wang, H. Dong, and D. Chen. PID self-tuning control based on evolution- ary programming. In Proceedings of the Fourth World Congress on Intelligent Control and Automation, volume 4, pages 3132-3135, 2002.
- A Watkins and J Timmis. Artificial Immune Recognition System (AIRS): Revi- sions and Refinements. In Proceedings of the First International Conference on Artificial Immune Systems, volume 1, pages 173-181, 2002.
- C.J.H.C. Watkins. Learning from Delayed Rewards. PhD thesis, King's College, Cambridge University, U.K., 1989.
- D.J. Watts and S.H. Strogatz. Collective Dynamics of 'Small-World' Networks. Nature, 393(6684):440-442, 1998.
- C. Wei, Z. He, Y. Zheng, and W. Pi. Swarm Directions Embedded in Fast Evo- lutionary Programming. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1278-1283, May 2002.
- C. Wei, S. Yao, and Z. He. A Modified Evolutionary Programming. In Proceed- ings of the IEEE International Conference on Evolutionary Computation, pages 135-138, 1996.
- A.S. Weigend, D.E. Rumelhart, and B.A. Huberman. Generalization by Weight- Elimination with Application to Forecasting. In R. Lippmann, J. Moody, and D.S. Touretzky, editors, Advances in Neural Information Processing Systems, volume 3, pages 875-882, 1991.
- J.Y. Wen, Q.H. Wu, L. Jiang, and S.J. Cheng. Pseudo-Gradient Based Evolu- tionary Programming. Electronic Letters, 39(7):631-632, 2003.
- P.J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioural Sciences. PhD thesis, Harvard University, Boston, USA, 1974.
- L.F.A. Wessels and E. Barnard. Avoiding False Local Minima by Proper Initial- ization of Connections. IEEE Transactions on Neural Networks, 3(6):899-905, 1992.
- D. Wettschereck and T. Dietterich. Improving the Performance of Radial Basis Function Networks by Learning Center Locations. In J.E. Moody, S.J. Hanson, and R.P. Lippmann, editors, Advances in Neural Information Processing Sys- tems, volume 4, pages 1133-1140, San Mateo, C.A., 1992. Morgan Kaufmann.
- C.M. White and G.G. Yen. A Hybrid Evolutionary Algorithm for TSP. In Pro- ceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1473-1478, 2004.
- D. White and P. Ligomenides. GANNet: A Genetic Algorithm for Optimizing Topology and Weights in Neural Network Design. In J. Mira, J. Cabestany, and A. Prieto, editors, International Workshop on Artificial Neural Networks, Lecture Notes in Computer Science, volume 686, pages 332-327, Berlin, 1993. Springer-Verlag.
- T. White and B. Pagurek. Towards Multi-Swarm Problem Solving in Networks. In Proceedings of the International Conference on Multi-Agent Systems, pages 333-340, 1998.
- D. Whitley. A Review of Models for Simple Genetic Algorithms and Cellu- lar Genetic Algorithms. In V. Rayward-Smith, editor, Applications of Modern Heuristics Methods, pages 55-67, 1995.
- D. Whitley and C. Bogart. The Evolution of Connectivity: Pruning Neural Networks using Genetic Algorithms. In Proceedings of the IEEE International Joint Conference on Neural Networks, volume 1, pages 134-137, 1990.
- D. Whitley, T. Starkweather, and D. Fuquay. Scheduling Problems and the Trav- elings Salesmen: The Genetic Edge Recombination Operator. In Proceedings of the Third International Conference on Genetic Algorithms, pages 116-121.
- Morgan Kaufmann, 1989.
- D. Whitley and N.-W. Yu. Modeling Simple Genetic Algorithms for Permuta- tion Problems. In D. Whitley and M. Vose, editors, Foundations of Genetic Algorithms, volume 3, pages 163-184, San Mateo, 1995. Morgan Kaufmann.
- B. Widrow. ADALINE and MADALINE -1963, Plenary Speech. In Proceedings of the First IEEE International Joint Conference on Neural Networks, volume 1, pages 148-158, 1987.
- B. Widrow and M.A. Lehr. 30 Years of Neural Networks: Perceptron, Madaline and Backpropagation. Proceedings of the IEEE, 78:1415-1442, 1990.
- S.T. Wierchoń and U. Kużelewska. Stable Clusters Formation in an Artificial Immune System. In Proceedings of the First International Conference on Arti- ficial Immune Systems, volume 1, pages 68-75, 2002.
- P.M. Williams. Bayesian Regularization and Pruning Using a Laplace Prior. Neural Computation, 7:117-143, 1995.
- R.J. Williams. A Class of Gradient-Estimating Algorithms for Reinforcement Learning in Neural Networks. In Proceedings of the IEEE First International Conference on Neural Networks, pages 601-608, 1987.
- M. Wilson, C. Melhuish, and A. Sendova-Franks. Creating Annular Structures Inspired by Ant Colony Behaviour using Minimalist Robots. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 2, pages 53-58, October 2002.
- M. Wilson, C. Melhuish, and A. Sendova-Franks. Multi-Object Segregation: Ant-Like Brood Sorting using Minimalism Robots. In Proceedings of the Seventh International Conference on Simulation of Adaptive Behaviour, pages 369-370, 2002.
- A. Wloszek and P.D. Domanski. Application of the Coevolutionary System to the Fuzzy Model Design. In IEEE International Conference on Fuzzy Systems, volume 1, pages 391-395, 1997.
- M. Wodrich and C. Bilchev. Cooperative Distributed Search: The Ant's Way. Control Cybernetics, 26:413, 1997.
- K.P. Wong and J. Yuryevich. Evolutionary-Programming-Based Algorithms for Environmentally-Constrained Economic Dispatch. IEEE Transactions on Power Systems, 13(2):301-306, 1997.
- M.L. Wong and K.S. Leung. Data Mining Using Grammar Based Genetic Pro- gramming and Applications. Springer, 2000.
- A. Wright. Genetic Algorithms for Real Parameter Optimization. In G.J.E. Rawlins, editor, Foundations of Genetic Algorithms, pages 205-220, San Mateo, C.A., 1991. Morgan Kaufmann.
- B. Wu and Z. Shi. A Clustering Algorithm Based on Swarm Intelligence. In Proceedings of the International Conference on Info-tech and Info-net, volume 3, pages 58-66, 2001.
- B.L. Wu and X.H. Yu. Enhanced Evolutionary Programming for Function Opti- mization. In IEEE World Congress on Computational Intelligence, Proceedings of the IEEE Congress on Evolutionary Computation, pages 695-698, 1998.
- X. Xiao, E.R. Dow, R.C. Eberhart, Z. Ben Miled, and R.J. Oppelt. Gene Clustering using Self-Organizing Maps and Particle Swarm Optimization. In Proceedings of the Second IEEE International Workshop on High Performance Computational Biology, page 10, 2003.
- X. Xie, W. Zhang, and Z. Yang. A Dissipative Particle Swarm Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages 1456-1461, 2002.
- X. Xie, W. Zhang, and Z. Yang. Adaptive Particle Swarm Optimization on Individual Level. In Proceedings of the Sixth International Conference on Signal Processing, volume 2, pages 1215-1218, 2002.
- X. Xie, W. Zhang, and Z. Yang. Hybrid Particle Swarm Optimizer with Mass Extinction. In Proceedings of the International Conference on Communication, Circuits and Systems, volume 2, pages 1170-1173, 2002.
- L. Xu, T. Reinikainen, W. Ren, B.P. Wang, Z. Han, and D. Agonafer. A simulation-based multi-objective design optimization of electronic packages un- der thermal cycling and bending. Microelectronics Reliability, 44(12):1977-1983, 2004.
- X. Xu and R.D. Dony. Differential Evolution with Powell's Direction Set Method in Medical Image Registration. In Proceedings of the IEEE International Sym- posium on Biomedical Imaging, volume 1, pages 732-735, 2004.
- Z. Xu, X. Hou, and J. Sun. Ant Algorithm-Based Task Scheduling in Grid Computing. In Canadian Conference on Electrical and Computer Engineering, volume 2, pages 1107-1110, May 2003.
- F. Xue, A.C. Sanderson, and R.J. Graves. Pareto-Based Multi-Objective Differ- ential Evolution. In Proceedings of the IEEE Congress on Evolutionary Compu- tation, volume 2, pages 862-869, 2003.
- Q. Xue, Y. Hu, and W.J. Tompkins. Analyses of the Hidden Units of Back- Propagation Model. In Proceedings of the IEEE International Joint Conference on Neural Networks, volume 1, pages 739-742, 1990.
- R. Yager. Multiple objective decision-making using fuzzy sets. International Journal of Man-Machine Studies, 9:375-382, 1977.
- Y. Yang and M. Kamel. Clustering Ensemble using Swarm Intelligence. In Proceedings of the IEEE Swarm Intelligence Symposium, pages 65-71, 2003.
- X. Yao, G. Lin, and Y. Liu. An Analysis of Evolutionary Algorithms Based on Neighbourhood and Step Sizes. In P.J. Angeline, R.G. Reynolds, J.R. McDon- nell, and R. Eberhart, editors, Proceedings of the Sixth Annual Conference on Evolutionary Programming, pages 297-307, 1997.
- X. Yao and Y. Liu. Evolving Artificial Neural Networks through Evolutionary Programming. In Proceedings of the Fifth Annual Conference on Evolutionary Programming, pages 257-266, 1996.
- X. Yao and Y. Liu. Fast Evolutionary Programming. In L.J. Fogel, P.J. An- geline, and T.B. Bäck, editors, Proceedings of the Fifth Annual Conference on Evolutionary Programming, pages 451-460. MIT Press, 1996.
- X. Yao and Y. Liu. Fast Evolution Strategies. In P.J. Angeline, R.G. Reynolds, J.R. McDonnell, and R. Eberhart, editors, Evolutionary Programming VI, pages 151-161, Berlin, 1997. Springer.
- X. Yao, Y. Liu, and G. Liu. Evolutionary Programming Made Faster. IEEE Transactions on Evolutionary Computation, 3(2):82-102, 1999.
- K. Yasuda, A. Ide, and N. Iwasaki. Adaptive Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, volume 2, pages 1554-1559, 2003.
- S. Yasui. Convergence Suppression and Divergence Facilitation: Minimum and Joint Use of Hidden Units by Multiple Outputs. Neural Networks, 10(2):353-367, 1997.
- Z-W. Ye and Z-B. Zheng. Research in the Configuration of Parameter α, β, ρ in Ant Algorithm Exemplified by TSP. In Proceedings of the International Conference on Machine Learning and Cybernetics, volume 4, pages 2106-2111, 2003.
- G.G. Yen and H. Lu. Dynamic Population Strategy Assisted Particle Swarm Op- timization. In Proceedings of the IEEE International Symposium on Intelligent Control, pages 697-702, 2003.
- H. Yoshida, Y. Fukuyama, S. Takayama, and Y Nakanishi. A Particle Swarm Optimization for Reactive Power and Voltage Control in Electric Power Systems Considering Voltage Security Assessment. In Proceedings of the IEEE Interna- tional Conference on Systems, Man, and Cybernetics, volume 6, pages 497-502, October 1999.
- X-H. Yu and G-A. Chen. Efficient Backpropagation Learning using Optimal Learning Rate and Momentum. Neural Networks, 10(3):517-527, 1997.
- J. Yuryevich and K.P. Wong. Evolutionary Programming Based Optimal Power Flow Algorithm. IEEE Transactions on Power Systems, 14(4):1245-1250, 1999.
- L.A. Zadeh. Fuzzy Sets. Information and Control, 8:338-353, 1965.
- L.A. Zadeh. Fuzzy Algorithms. Information and Control, 12:94-102, 1968.
- L.A. Zadeh. The Concept of a Linguistic Variable and its Application to Ap- proximate Reasoning, Parts 1 and 2. Information Sciences, pages 338-353, 1975.
- L.A. Zadeh. Soft Computing and Fuzzy Logic. IEEE Software, 11(6):48-56, 1994.
- B-T. Zhang. Accelerated Learning by Active Example Selection. International Journal of Neural Systems, 5(1):67-75, 1994.
- C. Zhang and H. Shao. An ANN's Evolved by a New Evolutionary System and Its Application. In Proceedings of the Thirty-Ninth IEEE Conference on Decision and Control, volume 4, pages 3563-3563, 2000.
- C. Zhang, H. Shao, and Y. Li. Particle Swarm Optimization for Evolving Arti- ficial Neural Network. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pages 2487-2490, 2000.
- F. Zhang and D. Xue. An Optimal Concurrent Design Model using Distributed Product Development Life-Cycle Databases. In Sixth International Conference on Computer Supported Cooperative Work in Design, pages 273-278, 2001.
- G. Zhang and Y. Zhang. Optimal Design of High Voltage Bushing Electrode in Transformer with Evolution Strategy. IEEE Transactions on Magnetics, 35(3):1690-1693, 1999.
- J. Zhang and J. Xu. Evolutionary Programming Based on Uniform Design with Application to Multiobjective Optimization. In Proceedings of the Fifth World Congress on Intelligent Control and Automation, volume 3, pages 2298-2302, 2004.
- W-J. Zhang and X-F. Xie. DEPSO: Hybrid Particle Swarm with Differential Evolution Operator. In Proceedings of the IEEE International Conference on System, Man, and Cybernetics, volume 4, pages 3816-3821, 2003.
- X. Zhang, L. Yu, Y. Zheng, Y. Shen, G. Zhou, L. Chen, L. Xi, T. Yuan, J. Zhang, and B. Yang. Two-Stage Adaptive PMD Compensation in a 10 Gbit/s Optical Communication System using Particle Swarm Optimization Algorithm. Optics Communications, 231(1-6):233-242, 2004.
- Y. Zhang and S. Huang. Multiobjective Optimization using Distance-Based Particle Swarm Optimization. In Proceedings of the International Conference on Computational Intelligence, Robotics and Autonomous Systems, 2003.
- Y. Zhang and A. Kandel. Compensatory Genetic Fuzzy Neural Networks and Their Applications. World Scientific, 1998.
- Y. Zheng, L. Ma, L. Zhang, and J. Qian. On the Convergence Analysis and Parameter Selection in Particle Swarm Optimization. In Proceedings of the International Conference on Machine Learning and Cybernetics, volume 3, pages 1802-1807, 2003.
- Y. Zheng, L. Ma, L. Zhang, and J. Qian. Robust PID Controller Design us- ing Particle Swarm Optimization. In Proceedings of the IEEE International Symposium on Intelligence Control, pages 974-979, 2003.
- Q. Zhou and Y. Li. Directed Variation in Evolution Strategies. IEEE Transac- tions on Evolutionary Computation, 7(4):356-366, 2006.
- J. Zurada. Lambda Learning Rule for Feedforward Neural Networks. In Proceed- ings of the IEEE International Joint Conference on Neural Networks, volume 3, pages 1808-1811, 1992.
- J.M. Zurada, A. Malinowski, and I. Cloete. Sensitivity Analysis for Minimization of Input Data Dimension for Feedforward Neural Network. In Proceedings of the IEEE International Symposium on Circuits and Systems, volume 6, pages 447-450, 1994.