Academia.eduAcademia.edu

Outline

Parikh matrices and Istrail morphism

https://doi.org/10.11113/MJFAS.V9N1.72

Abstract

A word is a sequence of symbols. A scattered subword or simply a subword of the word is a subsequence of. Parikh matrix ()is an ingenius tool introduced by Mateescu et al (2001) to count certain subwords in a word. Various properties of Parikh matrices have been established. Two words and are said to be M-ambiguous or amiable if their Parikh matrices () and ()are the same. On the other hand a morphism is a mapping on words whose images ()are also words with the property that, () = () ()for given words and. Istrailmorphism (Istrail, 1977) is a specific kind of morphism on a set { , , }of three symbols. Using this morphism, M-ambiguity or amiability of words based on Parikh matrices is investigated by Atanasiu (2010). Parikh matrices of words that involve certain ratio-property are investigated by Subramanian et al (2009). Here we consider this kind of ratio-property in the context of Istrailmorphism and obtain certain properties of morphic images of words under Istrailmorphism. Using these properties,conditions are obtained for product of Parikh matrices of such morphic images under Istrailmorphismto commute.

References (14)

  1. M. Lothaire, Combinatorics on words,in: Encyclopedia of Mathematics and its Applications, vol. 17, Addison-Wesley, 1983.
  2. R. J. Parikh, J. Assoc. Comput. Machinery, 13( 4) (1966) 570-581.
  3. G. Rozenberg and A. Salomaa, Eds., Handbook of Formal Languages, Vols. 1-3, New York: Springer-Verlag New York, Inc., 1997.
  4. A. Salomaa, Formal Languages, Academic Press, 1973.
  5. A. Mateescu, A. Salomaa, K. Salomaa and S. Yu, RAIRO-Theor. Inform. and Appl., 35( 6) (2001) 551-564.
  6. A. Atanasiu, Int. J. Found. Comput. Sci., 18(2) (2007) 387-400.
  7. A. Atanasiu, C. Martin-vide and A. Mateescu, Fundam. Inform., 49(4) (2002) 289-299.
  8. S. Fosse and G. Richomme, Inf. Process. Lett., 92(2) (2004) 77-82.
  9. K. G. Subramanian, A. M. Huey and A. K. Nagar, Int. J. Found. Comp. Sci., 20(2) (2009) 211-219.
  10. A. Salomaa, Theor. Comp. Sci., 411 (2010) 1818-1827.
  11. A. Atanasiu, R. Atanasiu and I. Petre, Theor. Comput. Sci., 390(1) (2008) 102-109.
  12. K. Mahalingam and K. G. Subramanian, Int. J. Found. Comput. Sci., 23 (2012) 207-223.
  13. A. Atanasiu, Parikh Matrices, Int. J. Found. Comput. Sci., 21 (2010) 1021-1033.
  14. S. Istrail, Bulletin Mathematique, 21(3-4) (1977) 301-308.