Academia.eduAcademia.edu

Outline

Generalizations of Parikh mappings

2009, Theoretical Informatics and Applications

https://doi.org/10.1051/ITA/2009021

Abstract

Parikh matrices have become a useful tool for investigation of subword structure of words. Several generalizations of this concept have been considered. Based on the concept of formal power series, we describe a general framework covering most of these generalizations. In addition, we provide a new characterization of binary amiable wordswords having a common Parikh matrix.

References (24)

  1. J.-P. Allouche and J.O. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in Sequences and Their Applications, Proceedings of SETA '98, edited by C. Ding, T. Helleseth and H. Niederreiter. Springer-Verlag (1999) 1-16.
  2. A. Atanasiu, Binary amiable words. Int. J. Found. Comput. Sci. 18 (2007) 387-400.
  3. A. Atanasiu, R. Atanasiu and I. Petre, Parikh matrices and amiable words. Theoret. Comput. Sci. 390 (2008) 102-109.
  4. A. Atanasiu, C. Martín-Vide and A. Mateescu, On the injectivity of the Parikh matrix mapping. Fund. Inform. 49 (2002) 289-299.
  5. J. Berstel and D. Perrin, The origins of combinatorics on words. Eur. J. Combin. 28 (2007) 996-1022.
  6. G. Birkhoff and S. Mac Lane, A Survey of Modern Algebra. MacMillan, New York, 4th edn. (1977).
  7. P. Borwein and C. Ingalls, The Prouhet-Tarry-Escott problem revisited. Enseign. Math. 40 (1994) 3-27.
  8. A. Černý, On fairness of D0L systems. Discrete Appl. Math. 155 (2007) 1769-1773.
  9. A. Černý, On subword symmetry of words. Int. J. Found. Comput. Sci. 19 (2008) 243-250.
  10. A. Černý, On fair words. J. Autom. Lang. Comb. 14 (2009) (to appear).
  11. Ö. Egecioglu and O.H. Ibarra, A matrix q-analogue of the Parikh mapping, in IFIP TCS, edited by J.-J. Lévy, E.W. Mayr and J.C. Mitchell. Kluwer (2004) 125-138.
  12. S. Fossé and G. Richomme, Some characterizations of Parikh matrix equivalent binary words. Inform. Process. Lett. 92 (2004) 77-82.
  13. M. Lothaire, Combinatorics on words. Cambridge University Press (1997).
  14. A. Mateescu, Algebraic aspects of Parikh matrices, in Theory Is Forever, edited by J. Karhumäki, H.A. Maurer, G. Pȃun and G. Rozenberg. Lect. Notes Comput. Sci. 3113 (2004) 170-180.
  15. A. Mateescu and A. Salomaa, Matrix indicators for subword occurrences and ambiguity. Int. J. Found. Comput. Sci. 15 (2004) 277-292.
  16. A. Mateescu, A. Salomaa, K. Salomaa and S. Yu, A sharpening of the Parikh mapping. RAIRO-Theor. Inf. Appl. 35 (2001) 551-564.
  17. A. Mateescu, A. Salomaa and Sheng Yu, Subword histories and Parikh matrices. J. Comput. System Sci. 68 (2004) 1-21.
  18. R.J. Parikh, On context-free languages. J. ACM 13 (1966) 570-581.
  19. E. Prouhet, Mémoire sur quelques relations entre les puissances des nombres. C.R. Acad. Sci. Paris 33 (1851) 255.
  20. A. Salomaa, Independence of certain quantities indicating subword occurrences. Theoret. Comput. Sci. 362 (2006) 222-231.
  21. A. Salomaa, Comparing subword occurrences in binary D0L sequences. Int. J. Found. Comput. Sci. 18 (2007) 1395-1406.
  22. A Salomaa, Subword balance in binary words, languages and sequences. Fund. Inform. 75 (2007) 469-482.
  23. T.-F. S ¸erbȃnut ¸ȃ, Extending Parikh matrices. Theoret. Comput. Sci. 310 (2004) 233-246.
  24. Wikipedia. Rings. http://en.wikipedia.org/wiki/Ring_(mathematics). Communicated by P. Weil. Received April 9, 2009. Accepted October 12, 2009.