Generalizations of Parikh mappings
2009, Theoretical Informatics and Applications
https://doi.org/10.1051/ITA/2009021Abstract
Parikh matrices have become a useful tool for investigation of subword structure of words. Several generalizations of this concept have been considered. Based on the concept of formal power series, we describe a general framework covering most of these generalizations. In addition, we provide a new characterization of binary amiable wordswords having a common Parikh matrix.
References (24)
- J.-P. Allouche and J.O. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in Sequences and Their Applications, Proceedings of SETA '98, edited by C. Ding, T. Helleseth and H. Niederreiter. Springer-Verlag (1999) 1-16.
- A. Atanasiu, Binary amiable words. Int. J. Found. Comput. Sci. 18 (2007) 387-400.
- A. Atanasiu, R. Atanasiu and I. Petre, Parikh matrices and amiable words. Theoret. Comput. Sci. 390 (2008) 102-109.
- A. Atanasiu, C. Martín-Vide and A. Mateescu, On the injectivity of the Parikh matrix mapping. Fund. Inform. 49 (2002) 289-299.
- J. Berstel and D. Perrin, The origins of combinatorics on words. Eur. J. Combin. 28 (2007) 996-1022.
- G. Birkhoff and S. Mac Lane, A Survey of Modern Algebra. MacMillan, New York, 4th edn. (1977).
- P. Borwein and C. Ingalls, The Prouhet-Tarry-Escott problem revisited. Enseign. Math. 40 (1994) 3-27.
- A. Černý, On fairness of D0L systems. Discrete Appl. Math. 155 (2007) 1769-1773.
- A. Černý, On subword symmetry of words. Int. J. Found. Comput. Sci. 19 (2008) 243-250.
- A. Černý, On fair words. J. Autom. Lang. Comb. 14 (2009) (to appear).
- Ö. Egecioglu and O.H. Ibarra, A matrix q-analogue of the Parikh mapping, in IFIP TCS, edited by J.-J. Lévy, E.W. Mayr and J.C. Mitchell. Kluwer (2004) 125-138.
- S. Fossé and G. Richomme, Some characterizations of Parikh matrix equivalent binary words. Inform. Process. Lett. 92 (2004) 77-82.
- M. Lothaire, Combinatorics on words. Cambridge University Press (1997).
- A. Mateescu, Algebraic aspects of Parikh matrices, in Theory Is Forever, edited by J. Karhumäki, H.A. Maurer, G. Pȃun and G. Rozenberg. Lect. Notes Comput. Sci. 3113 (2004) 170-180.
- A. Mateescu and A. Salomaa, Matrix indicators for subword occurrences and ambiguity. Int. J. Found. Comput. Sci. 15 (2004) 277-292.
- A. Mateescu, A. Salomaa, K. Salomaa and S. Yu, A sharpening of the Parikh mapping. RAIRO-Theor. Inf. Appl. 35 (2001) 551-564.
- A. Mateescu, A. Salomaa and Sheng Yu, Subword histories and Parikh matrices. J. Comput. System Sci. 68 (2004) 1-21.
- R.J. Parikh, On context-free languages. J. ACM 13 (1966) 570-581.
- E. Prouhet, Mémoire sur quelques relations entre les puissances des nombres. C.R. Acad. Sci. Paris 33 (1851) 255.
- A. Salomaa, Independence of certain quantities indicating subword occurrences. Theoret. Comput. Sci. 362 (2006) 222-231.
- A. Salomaa, Comparing subword occurrences in binary D0L sequences. Int. J. Found. Comput. Sci. 18 (2007) 1395-1406.
- A Salomaa, Subword balance in binary words, languages and sequences. Fund. Inform. 75 (2007) 469-482.
- T.-F. S ¸erbȃnut ¸ȃ, Extending Parikh matrices. Theoret. Comput. Sci. 310 (2004) 233-246.
- Wikipedia. Rings. http://en.wikipedia.org/wiki/Ring_(mathematics). Communicated by P. Weil. Received April 9, 2009. Accepted October 12, 2009.