Academia.eduAcademia.edu

Outline

Quantum generalisation of feedforward neural networks

npj Quantum Information

https://doi.org/10.1038/S41534-017-0032-4

Abstract

We propose a quantum generalisation of a classical neural network. The classical neurons are firstly rendered reversible by adding ancillary bits. Then they are generalised to being quantum reversible, i.e., unitary (the classical networks we generalise are called feedforward, and have step-function activation functions). The quantum network can be trained efficiently using gradient descent on a cost function to perform quantum generalisations of classical tasks. We demonstrate numerically that it can: (i) compress quantum states onto a minimal number of qubits, creating a quantum autoencoder, and (ii) discover quantum communication protocols such as teleportation. Our general recipe is theoretical and implementation-independent. The quantum neuron module can naturally be implemented photonically.

References (46)

  1. Nielsen, M. A. Neural Networks and Deep Learning (Determination Press, 2015).
  2. Azoff, E. M. Neural Network Time Series Forecasting of Financial Markets (Wiley, 1994).
  3. LeCunn, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015).
  4. Schuld, M., Sinayskiy, I. & Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 56, 172-185 (2014).
  5. Biamonte, J. et al. Quantum Machine Learning. Preprint at https://arxiv.org/abs/ 1611.09347 (2016).
  6. Lloyd, S., Mohseni, M. & Rebentrost, P. Quantum algorithms for supervised and unsupervised machine learning. Preprint at https://arxiv.org/abs/1307.0411 (2013).
  7. Lloyd, S., Mohseni, M. & Rebentrost, P. Quantum principal component analysis. Nat Phys 10, 631-633 (2014).
  8. Montanaro, A. Quantum pattern matching fast on average. Algorithmica 10, 16-39 (2017).
  9. Aaronson, S. Read the fine print. Nat. Phys. 11, 291-293 (2015).
  10. Garnerone, S., Zanardi, P. & Lidar, D. A. Adiabatic quantum algorithm for search engine ranking. Phys. Rev. Lett. 108, 230506 (2012).
  11. Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009).
  12. Lloyd, S., Garnerone, S. & Zanardi, P. Quantum algorithms for topological and geometric analysis of big data. Nat. Commun. 7, 10138 (2016).
  13. Rebentrost, P., Mohseni, M. & Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014).
  14. Wiebe, N., Braun, D. & Lloyd, S. Quantum algorithm for data fitting. Phys. Rev. Lett. 109, 050505 (2012).
  15. Adcock, J. et al. Advances in quantum machine learning https://arxiv.org/abs/ 1512.02900 (2015).
  16. Heim, B., Rønnow, T. F., Isakov, S. V. & Troyer, M. Quantum versus classical annealing of Ising spin glasses. Science 348, 215-217 (2015).
  17. Gross, D., Liu, Y. K., Flammia, S. T., Becker, S. & Eisert, J. Quantum state tomo- graphy via compressed sensing. Phys. Rev. Lett. 105, 150401 (2010).
  18. Dunjko, V., Taylor, J. M. & Briegel, H. J. Quantum-enhanced machine learning. Phys. Rev. Lett. 117, 130501 (2016).
  19. Wittek, P. (ed.) Quantum Machine Learning (Academic, 2014).
  20. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  21. Garner, A. J. P., Dahlsten, O. C. O., Nakata, Y., Murao, M. & Vedral, V. A framework for phase and interference in generalized probabilistic theories. New. J. Phys. 15, 093044 (2013).
  22. Lechner, W., Hauke, P. & Zoller, P. A quantum annealing architecture with all-to-all connectivity from local interactions. Sci. Adv. 1, e1500838 (2015).
  23. Wiebe, N., Kapoor, A. & Svore, K. M. Quantum deep learning. Preprint at https:// arxiv.org/abs/1303.5904 (2015).
  24. Schuld, M., Sinayskiy, I. & Petruccione, F. The quest for a quantum neural network. Quant. Inf. Process. 13, 25672586 (2014).
  25. Bisio, A., Chiribella, G., D'Ariano, G. M., Facchini, S. & Perinotti, P. Optimal quantum learning of a unitary transformation. Phys. Rev. A 81, 032324 (2010).
  26. Sasaki, M. & Carlini, A. Quantum learning and universal quantum matching machine. Phys. Rev. A 66, 022303 (2002).
  27. Sentís, G., Guţă, M. & Adesso, G. Quantum learning of coherent states. EPJ Quant. Technol. 2, 17 (2015).
  28. Banchi, L., Pancotti, N. & Bose, S. Quantum gate learning in qubit networks: Toffoli gate without time-dependent control. NPJ Quant. Inf. 2, 16019 (2016).
  29. Palittapongarnpim, P., Wittek, P., Zahedinejad, E., Vedaie, S. & Sanders, B. C. Learning in quantum control: high-dimensional global optimization for noisy quantum dynamics. Neurocomputing (in press, available online) doi: 10.1016/j. neucom.2016.12.087 (2016).
  30. Feynman, R. P. Quantum mechanical computers. Found. Phys. 16, 507531 (1986).
  31. Muthukrishnan, A. Classical and Quantum Logic Gates: An Introduction to Quan- tum Computing. Rochester Center for Quantum Information (online seminar notes). Retrieved from http://www.optics.rochester.edu/~stroud/presentations/ muthukrishnan991/LogicGates.pdf (1999).
  32. Curtis, C. W. & Reiner, I. Representation Theory of Finite Groups and Associative Algebras (AMS Chelsea Publishing, 1962).
  33. Bartlett, P. L. & Downs, T. Using random weights to train multilayer networks of hard-limiting units. IEEE Trans. Neural Netw. 3, 202-210 (1992).
  34. Downs, T. & Gaynier, R. J. The use of random weights for the training of multilayer networks of neurons with heaviside characteristics. Math. Comput. Model. 22, 53-61 (1995).
  35. Rowell, D. Computing the Matrix Exponential the Cayley-Hamilton Method. Department of Mechanical Engineering, MIT (online lecture notes). Retrieved from http://web.mit.edu/2.151/www/Handouts/CayleyHamilton.pdf (2004).
  36. Hedemann, S. R. Hyperspherical parameterization of unitary matrices. Preprint at https://arxiv.org/abs/1303.5904 (2013).
  37. Wilde, M. M. Quantum Information Theory (Cambridge University Press, 2013).
  38. Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing. Preprint at https://arxiv.org/abs/1607.08535 (2016).
  39. Rojas, R. Neural Networks (Springer, 1996).
  40. Cerf, N. J., Adami, C. & Kwiat, P. G. Optical simulation of quantum logic. Phys. Rev. A. 57, R1477-R1480 (1998).
  41. Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58-61 (1994).
  42. Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. An optimal design for universal multiport interferometers. Preprint at https:// arxiv.org/abs/1603.08788 (2016).
  43. Knill, E., Laamme, R. & Milburn, G. J. A for efficient quantum computation with linear optics. Nature 409, (2001).
  44. Humphreys, P. C. et al. Strain-optic active control for quantum integrated pho- tonics. Opt. Express 22, 21719-21726 (2014).
  45. Sansoni, L. et al. Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503 (2010).
  46. Bonneau, D. et al. Fast path and polarization manipulation of telecom wave- length single photons in lithium niobate waveguide devices. Phys. Rev. Lett. 108, 053601 (2012).