Academia.eduAcademia.edu

Outline

A Leap among Entanglement and Neural Networks: A Quantum Survey

2021

Abstract

In recent years, Quantum Computing witnessed massive improvements both in terms of resources availability and algorithms development. The ability to harness quantum phenomena to solve computational problems is a long-standing dream that has drawn the scientific community’s interest since the late ’80s. In such a context, we pose our contribution. First, we introduce basic concepts related to quantum computations, and then we explain the core functionalities of technologies that implement the Gate Model and Adiabatic Quantum Computing paradigms. Finally, we gather, compare and analyze the current state-of-the-art concerning Quantum Perceptrons and Quantum Neural Networks implementations.

References (201)

  1. Scott Aaronson. 2015. Read the fine print. Nature Physics 11, 4 (2015), 291-293.
  2. Scott Aaronson and Alex Arkhipov. 2011. The computational complexity of linear optics. In Proceedings of the forty-third annual ACM symposium on Theory of computing. Association for Computing Machinery, 333-342.
  3. Farid Ablayev, Marat Ablayev, Joshua Zhexue Huang, Kamil Khadiev, Nailya Salikhova, and Dingming Wu. 2020. On quantum methods for machine learning problems part I: Quantum tools. Big Data Mining and Analytics 3, 1 (2020), 41-55.
  4. Farid Ablayev, Marat Ablayev, Joshua Zhexue Huang, Kamil Khadiev, Nailya Salikhova, and Dingming Wu. 2020. On quantum methods for machine learning problems part II: Quantum classification algorithms. Big Data Mining and Analytics 3, 1 (2020), 56-67.
  5. Daniel S Abrams and Seth Lloyd. 1999. Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Physical review letters 83, 24 (1999), 5162.
  6. Jeremy Adcock, Euan Allen, Matthew Day, Stefan Frick, Janna Hinchliff, Mack Johnson, Sam Morley-Short, Sam Pallister, Alasdair Price, and Stasja Stanisic. 2015. Advances in quantum machine learning. arXiv preprint arXiv:1512.02900 (2015).
  7. D Aharonov, W van Dam, J Kempe, Z Landau, S Lloyd, and O Regev. 2004. Adiabatic computation is equivalent to standard quantum computation. arXiv preprint quant-ph/0405098 (2004).
  8. Dorit Aharonov, Wim Van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded Regev. 2008. Adiabatic quantum computation is equivalent to standard quantum computation. SIAM review 50, 4 (2008), 755-787.
  9. Esma Aïmeur, Gilles Brassard, and Sébastien Gambs. 2006. Machine learning in a quantum world. In Conference of the Canadian Society for Computational Studies of Intelligence. Springer, 431-442.
  10. Esma Aïmeur, Gilles Brassard, and Sébastien Gambs. 2013. Quantum speed-up for unsupervised learning. Machine Learning 90, 2 (2013), 261-287.
  11. Akshay Ajagekar and Fengqi You. 2019. Quantum computing for energy systems optimization: Challenges and opportunities. Energy 179 (2019), 76-89.
  12. Tameem Albash and Daniel A Lidar. 2018. Adiabatic quantum computation. Reviews of Modern Physics 90, 1 (2018), 015002.
  13. Igor Aleksander. 1966. Self-adaptive universal logic circuits. Electronics Letters 2, 8 (1966), 321-322.
  14. Jonathan Allcock and Shengyu Zhang. 2019. Quantum machine learning. National Science Review 6, 1 (2019), 26-28.
  15. MV Altaisky. 2001. Quantum neural network. arXiv preprint quant-ph/0107012 (2001).
  16. Mohammad H Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchytskyy, and Roger Melko. 2018. Quantum boltzmann machine. Physical Review X 8, 2 (2018), 021050.
  17. Anders SG Andrae and Tomas Edler. 2015. On global electricity usage of communication technology: trends to 2030. Challenges 6, 1 (2015), 117-157. Manuscript submitted to ACM
  18. Srinivasan Arunachalam and Ronald de Wolf. 2017. Guest column: A survey of quantum learning theory. ACM SIGACT News 48, 2 (2017), 41-67.
  19. Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. 2019. Quantum supremacy using a programmable superconducting processor. Nature 574, 7779 (2019), 505-510.
  20. Francisco Barahona. 1982. On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15, 10 (1982), 3241.
  21. Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A Smolin, and Harald Weinfurter. 1995. Elementary gates for quantum computation. Physical review A 52, 5 (1995), 3457.
  22. Stephen M Barnett and Sarah Croke. 2009. Quantum state discrimination. Advances in Optics and Photonics 1, 2 (2009), 238-278.
  23. Robert Barr, Colin Trout, Yasuo Oda, Greg Quiroz, Kevin Schultz, Paraj Titum, Leigh Norris, Lorenza Viola, and David Clader. 2021. Characterization of Time-Correlated Semiclassical Control Noise of IBM Transmon Qubits. Bulletin of the American Physical Society (2021).
  24. Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J Osborne, Robert Salzmann, Daniel Scheiermann, and Ramona Wolf. 2020. Training deep quantum neural networks. Nature communications 11, 1 (2020), 1-6.
  25. Elizabeth C Behrman, John Niemel, James E Steck, and Steve R Skinner. 1996. A quantum dot neural network. In Proceedings of the 4th Workshop on Physics of Computation. 22-24.
  26. Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. 2019. Parameterized quantum circuits as machine learning models. Quantum Science and Technology 4, 4 (2019), 043001.
  27. Paul Benioff. 1980. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. Journal of statistical physics 22, 5 (1980), 563-591.
  28. Charles H Bennett. 1992. Quantum cryptography using any two non orthogonal states. Physical review letters 68, 21 (1992), 3121.
  29. Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. 1997. Strengths and weaknesses of quantum computing. SIAM journal on Computing 26, 5 (1997), 1510-1523.
  30. AJ Berkley, MW Johnson, P Bunyk, R Harris, J Johansson, T Lanting, E Ladizinsky, E Tolkacheva, MHS Amin, and G Rose. 2010. A scalable readout system for a superconducting adiabatic quantum optimization system. Superconductor Science and Technology 23, 10 (2010), 105014.
  31. Ethan Bernstein and Umesh Vazirani. 1997. Quantum complexity theory. SIAM Journal on computing 26, 5 (1997), 1411-1473.
  32. Kishor Bharti, Tobias Haug, Vlatko Vedral, and Leong-Chuan Kwek. 2020. Machine learning meets quantum foundations: A brief survey. AVS Quantum Science 2, 3 (2020), 034101.
  33. Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. 2017. Quantum machine learning. Nature 549, 7671 (2017), 195-202.
  34. James Binney and David Skinner. 2013. The physics of quantum mechanics. Oxford University Press.
  35. Alex Bocharov, Martin Roetteler, and Krysta M Svore. 2015. Efficient synthesis of universal repeat-until-success quantum circuits. Physical review letters 114, 8 (2015), 080502.
  36. Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang, Michael J Bremner, John M Martinis, and Hartmut Neven. 2018. Characterizing quantum supremacy in near-term devices. Nature Physics 14, 6 (2018), 595-600.
  37. Max Born and Vladimir Fock. 1928. Beweis des adiabatensatzes. Zeitschrift für Physik 51, 3-4 (1928), 165-180.
  38. Fernando GSL Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M Svore, and Xiaodi Wu. 2019. Quantum SDP Solvers: Large Speed-ups, Optimality, and Applications to Quantum Learning. arXiv preprint arXiv:1710.02581 (2019).
  39. Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. 2002. Quantum amplitude amplification and estimation. Contemp. Math. 305 (2002), 53-74.
  40. Michael J Bremner, Richard Jozsa, and Dan J Shepherd. 2011. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467, 2126 (2011), 459-472.
  41. Michael J Bremner, Ashley Montanaro, and Dan J Shepherd. 2017. Achieving quantum supremacy with sparse and noisy commuting quantum computations. Quantum 1 (2017), 8.
  42. Yudong Cao, Gian Giacomo Guerreschi, and Alán Aspuru-Guzik. 2017. Quantum neuron: an elementary building block for machine learning on quantum computers. arXiv preprint arXiv:1711.11240 (2017).
  43. Yudong Cao, Jonathan Romero, Jonathan P Olson, Matthias Degroote, Peter D Johnson, Mária Kieferová, Ian D Kivlichan, Tim Menke, Borja Peropadre, Nicolas PD Sawaya, et al. 2019. Quantum chemistry in the age of quantum computing. Chemical reviews 119, 19 (2019), 10856-10915.
  44. Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al. 2020. Variational quantum algorithms. arXiv preprint arXiv:2012.09265 (2020).
  45. Hongxiang Chen, Leonard Wossnig, Simone Severini, Hartmut Neven, and Masoud Mohseni. 2021. Universal discriminative quantum neural networks. Quantum Machine Intelligence 3, 1 (2021), 1-11.
  46. Jian Chen, Jonathan L Habif, Zachary Dutton, Richard Lazarus, and Saikat Guha. 2012. Optical codeword demodulation with error rates below the standard quantum limit using a conditional nulling receiver. Nature Photonics 6, 6 (2012), 374-379.
  47. Lawrence W Cheuk, Matthew A Nichols, Katherine R Lawrence, Melih Okan, Hao Zhang, Ehsan Khatami, Nandini Trivedi, Thereza Paiva, Marcos Rigol, and Martin W Zwierlein. 2016. Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model. Science 353, 6305 (2016), 1260-1264.
  48. Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimiliano Pontil, Andrea Rocchetto, Simone Severini, and Leonard Wossnig. 2018. Quantum machine learning: a classical perspective. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, 2209 (2018), 20170551.
  49. J Ignacio Cirac and Peter Zoller. 2012. Goals and opportunities in quantum simulation. Nature Physics 8, 4 (2012), 264-266.
  50. Iris Cong, Soonwon Choi, and Mikhail D Lukin. 2019. Quantum convolutional neural networks. Nature Physics 15, 12 (2019), 1273-1278.
  51. Adenilton J Da Silva, Wilson R De Oliveira, and Teresa B Ludermir. 2012. Classical and superposed learning for quantum weightless neural networks. Neurocomputing 75, 1 (2012), 52-60.
  52. Wilson Rosa de Oliveira. 2009. Quantum RAM Based Neural Netoworks.. In ESANN, Vol. 9. Citeseer, 331-336.
  53. Virginia R de Sa. 1994. Learning classification with unlabeled data. In Advances in neural information processing systems. Citeseer, 112-119.
  54. Christian L Degen, F Reinhard, and Paola Cappellaro. 2017. Quantum sensing. Reviews of modern physics 89, 3 (2017), 035002.
  55. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, 248-255.
  56. David Deutsch. 1985. Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London.
  57. A. Mathematical and Physical Sciences 400, 1818 (1985), 97-117.
  58. David Deutsch and Richard Jozsa. 1992. Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 439, 1907 (1992), 553-558.
  59. Paul Adrien Maurice Dirac. 1939. A new notation for quantum mechanics. Mathematical Proceedings of the Cambridge Philosophical Society 35, 3 (1939), 416-418.
  60. Paul Adrien Maurice Dirac. 1981. The Principles of Quantum Mechanics. Clarendon Press -Oxford.
  61. Gordon WF Drake, Mark M Cassar, and Razvan A Nistor. 2002. Ground-state energies for helium, H-, and Ps-. Physical Review A 65, 5 (2002), 054501.
  62. Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng Tao. 2018. Implementable quantum classifier for nonlinear data. arXiv preprint arXiv:1809.06056 (2018).
  63. Lu-Ming Duan and Guang-Can Guo. 1998. Probabilistic cloning and identification of linearly independent quantum states. Physical review letters 80, 22 (1998), 4999.
  64. Vedran Dunjko and Hans J Briegel. 2018. Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Reports on Progress in Physics 81, 7 (2018), 074001.
  65. Vedran Dunjko and Peter Wittek. 2020. A non-review of Quantum Machine Learning: trends and explorations. Quantum Views 4 (2020), 32.
  66. Stavros Efthymiou, Sergi Ramos-Calderer, Carlos Bravo-Prieto, Adrián Pérez-Salinas, Diego García-Martín, Artur Garcia-Saez, José Ignacio Latorre, and Stefano Carrazza. 2020. Qibo: a framework for quantum simulation with hardware acceleration. arXiv preprint arXiv:2009.01845 (2020).
  67. Daniel J Egger, Claudio Gambella, Jakub Marecek, Scott McFaddin, Martin Mevissen, Rudy Raymond, Andrea Simonetto, Stefan Woerner, and Elena Yndurain. 2020. Quantum computing for Finance: state of the art and future prospects. IEEE Transactions on Quantum Engineering (2020).
  68. Jean Faber and Gilson A Giraldi. 2002. Quantum models of artificial neural networks. Electronically available: http://arquivosweb. lncc. br/pdfs/QNN- Review. pdf 5, 7.2 (2002), 5-7.
  69. Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014).
  70. Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew Lundgren, and Daniel Preda. 2001. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 5516 (2001), 472-475.
  71. Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. 2000. Quantum computation by adiabatic evolution. arXiv preprint quant- ph/0001106 (2000).
  72. Edward Farhi and Sam Gutmann. 1998. Analog analogue of a digital quantum computation. Physical Review A 57 (April 1998), 2403-2406. Issue 4.
  73. Richard P Feynman. 1982. Simulating physics with computers. International Journal of Theoretical Physics 21, 6/7 (1982).
  74. Jay M Gambetta, Jerry M Chow, and Matthias Steffen. 2017. Building logical qubits in a superconducting quantum computing system. npj Quantum Information 3, 1 (2017), 1-7.
  75. Iulia M Georgescu, Sahel Ashhab, and Franco Nori. 2014. Quantum simulation. Reviews of Modern Physics 86, 1 (2014), 153.
  76. Maddalena Ghio, Daniele Malpetti, Matteo Rossi, Dagmar Bruß, and Chiara Macchiavello. 2017. Multipartite entanglement detection for hypergraph states. Journal of Physics A: Mathematical and Theoretical 51, 4 (2017), 045302.
  77. Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. 2011. Advances in quantum metrology. Nature Photonics 5, 4 (2011), 222.
  78. Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vid Stojevic, Andrew G Green, and Simone Severini. 2018. Hierarchical quantum classifiers. npj Quantum Information 4, 1 (2018), 1-8.
  79. David J Griffiths and Darrell F Schroeter. 2018. Introduction to quantum mechanics. Cambridge University Press.
  80. Lov K Grover. 1996. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. ACM, 212-219.
  81. Lov K Grover. 1997. Quantum mechanics helps in searching for a needle in a haystack. Physical review letters 79, 2 (1997), 325.
  82. Xiu Gu, Anton Frisk Kockum, Adam Miranowicz, Yu-xi Liu, and Franco Nori. 2017. Microwave photonics with superconducting quantum circuits. Physics Reports 718 (2017), 1-102.
  83. Gian Giacomo Guerreschi and Mikhail Smelyanskiy. 2017. Practical optimization for hybrid quantum-classical algorithms. arXiv preprint arXiv:1701.01450 (2017).
  84. Laszlo Gyongyosi and Sandor Imre. 2019. A survey on quantum computing technology. Computer Science Review 31 (2019), 51-71.
  85. Stuart Hadfield, Zhihui Wang, Bryan O'Gorman, Eleanor G Rieffel, Davide Venturelli, and Rupak Biswas. 2019. From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms 12, 2 (2019), 34.
  86. R Harris, J Johansson, AJ Berkley, MW Johnson, T Lanting, Siyuan Han, P Bunyk, E Ladizinsky, T Oh, I Perminov, et al. 2010. Experimental demonstration of a robust and scalable flux qubit. Physical Review B 81, 13 (2010), 134510.
  87. Richard Harris, Mark W Johnson, T Lanting, AJ Berkley, J Johansson, P Bunyk, E Tolkacheva, E Ladizinsky, N Ladizinsky, T Oh, et al. 2010. Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Physical Review B 82, 2 (2010), 024511.
  88. Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum algorithm for linear systems of equations. Physical review letters 103, 15 (2009), 150502.
  89. Aram W Harrow and Ashley Montanaro. 2017. Quantum computational supremacy. Nature 549, 7671 (2017), 203-209.
  90. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media.
  91. Vojtěch Havlíček, Antonio D Córcoles, Kristan Temme, Aram W Harrow, Abhinav Kandala, Jerry M Chow, and Jay M Gambetta. 2019. Supervised learning with quantum-enhanced feature spaces. Nature 567, 7747 (2019), 209-212.
  92. Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9729-9738.
  93. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE Computer Society, 770-778.
  94. Werner Heisenberg. 1925. Quantum-theoretical re-interpretation of kinematic and mechanical relations. Zeitschrift für Physik 33 (1925), 879-893.
  95. Maxwell Henderson, Samriddhi Shakya, Shashindra Pradhan, and Tristan Cook. 2020. Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Machine Intelligence 2, 1 (2020), 1-9.
  96. Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A fast learning algorithm for deep belief nets. Neural computation 18, 7 (2006), 1527-1554.
  97. Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feedforward networks are universal approximators. Neural networks 2, 5 (1989), 359-366.
  98. Wei Hu. 2018. Towards a real quantum neuron. Natural Science 10, 3 (2018), 99-109.
  99. Ben Jaderberg, Lewis W Anderson, Weidi Xie, Samuel Albanie, Martin Kiffner, and Dieter Jaksch. 2021. Quantum Self-Supervised Learning. arXiv preprint arXiv:2103.14653 (2021).
  100. MW Johnson, P Bunyk, F Maibaum, E Tolkacheva, AJ Berkley, EM Chapple, R Harris, J Johansson, T Lanting, I Perminov, et al. 2010. A scalable control system for a superconducting adiabatic quantum optimization processor. Superconductor Science and Technology 23, 6 (2010), 065004.
  101. Mark W Johnson, Mohammad HS Amin, Suzanne Gildert, Trevor Lanting, Firas Hamze, Neil Dickson, Richard Harris, Andrew J Berkley, Jan Johansson, Paul Bunyk, et al. 2011. Quantum annealing with manufactured spins. Nature 473, 7346 (2011), 194-198.
  102. Brian David Josephson. 1962. Possible new effects in superconductive tunnelling. Physics Letters 1, 7 (1962), 251-253.
  103. Brian David Josephson. 1974. The discovery of tunnelling supercurrents. Reviews of Modern Physics 46, 2 (1974), 251.
  104. Gil Kalai and Guy Kindler. 2014. Gaussian noise sensitivity and BosonSampling. arXiv preprint arXiv:1409.3093 (2014).
  105. Abu Kamruzzaman, Yousef Alhwaiti, Avery Leider, and Charles C Tappert. 2019. Quantum deep learning neural networks. In Future of Information and Communication Conference. Springer, 299-311.
  106. Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M Chow, and Jay M Gambetta. 2017. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 7671 (2017), 242-246.
  107. Phillip Kaye, Raymond Laflamme, Michele Mosca, et al. 2007. An introduction to quantum computing. Oxford University Press on Demand.
  108. Iordanis Kerenidis, Jonas Landman, Alessandro Luongo, and Anupam Prakash. 2018. q-means: A quantum algorithm for unsupervised machine learning. arXiv preprint arXiv:1812.03584 (2018).
  109. Iordanis Kerenidis, Jonas Landman, and Anupam Prakash. 2020. Quantum Algorithms for Deep Convolutional Neural Networks. In International Conference on Learning Representations (ICLR). OpenReview.net.
  110. Iordanis Kerenidis and Anupam Prakash. 2020. Quantum gradient descent for linear systems and least squares. Physical Review A 101, 2 (2020), 022316.
  111. Tariq M Khan and Antonio Robles-Kelly. 2020. A derivative-free method for quantum perceptron training in multi-layered neural networks. In International Conference on Neural Information Processing. Springer, 241-250.
  112. Subhash Khot. 2016. Hardness of Approximation. In 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 3-1.
  113. Nathan Killoran, Thomas R Bromley, Juan Miguel Arrazola, Maria Schuld, Nicolás Quesada, and Seth Lloyd. 2019. Continuous-variable quantum neural networks. Physical Review Research 1, 3 (2019), 033063.
  114. Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
  115. Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. 1983. Optimization by simulated annealing. Science 220, 4598 (1983), 671-680.
  116. Morten Kjaergaard, Mollie E Schwartz, Jochen Braumüller, Philip Krantz, Joel I-J Wang, Simon Gustavsson, and William D Oliver. 2020. Supercon- ducting qubits: Current state of play. Annual Review of Condensed Matter Physics 11 (2020), 369-395.
  117. Vladimir I Korobov. 2002. Nonrelativistic ionization energy for the helium ground state. Physical Review A 66, 2 (2002), 024501.
  118. Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P Orlando, Simon Gustavsson, and William D Oliver. 2019. A quantum engineer's guide to superconducting qubits. Applied Physics Reviews 6, 2 (2019), 021318.
  119. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems 25 (NIPS 2012), Vol. 25. 1097-1105.
  120. Yann LeCun, Yoshua Bengio, et al. 1995. Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks 3361, 10 (1995), 1995.
  121. Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature 521, 7553 (2015), 436-444.
  122. Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. 1989. Backpropagation applied to handwritten zip code recognition. Neural computation 1, 4 (1989), 541-551.
  123. RRaymond S. T. Lee. 2020. Quantum Finance -Intelligent Forecast and Trading Systems. Springer.
  124. Maciej Lewenstein. 1994. Quantum perceptrons. Journal of Modern Optics 41, 12 (1994), 2491-2501.
  125. Nana Liu and Patrick Rebentrost. 2018. Quantum machine learning for quantum anomaly detection. Physical Review A 97, 4 (2018), 042315.
  126. Wenjie Liu, Peipei Gao, Yuxiang Wang, Wenbin Yu, and Maojun Zhang. 2019. A unitary weights based one-iteration quantum perceptron algorithm for non-ideal training sets. IEEE Access 7 (2019), 36854-36865.
  127. Seth Lloyd. 1996. Universal quantum simulators. Science (1996), 1073-1078.
  128. Seth Lloyd. 2008. Enhanced sensitivity of photodetection via quantum illumination. Science 321, 5895 (2008), 1463-1465.
  129. Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. 2013. Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv:1307.0411 (2013).
  130. Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. 2014. Quantum principal component analysis. Nature Physics 10, 9 (2014), 631-633.
  131. Antonio Macaluso, Luca Clissa, Stefano Lodi, and Claudio Sartori. 2020. A Variational Algorithm for Quantum Neural Networks. In International Conference on Computational Science. Springer, 591-604.
  132. A Manju and Madhav J Nigam. 2014. Applications of quantum inspired computational intelligence: a survey. Artificial Intelligence Review 42, 1 (2014), 79-156.
  133. Andrea Mari, Thomas R Bromley, Josh Izaac, Maria Schuld, and Nathan Killoran. 2020. Transfer learning in hybrid classical-quantum neural networks. Quantum 4 (2020), 340.
  134. Roman Martoňák, Giuseppe E Santoro, and Erio Tosatti. 2002. Quantum annealing by the path-integral Monte Carlo method: The two-dimensional random Ising model. Physical Review B 66, 9 (2002), 094203.
  135. Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. 2016. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics 18, 2 (2016), 023023.
  136. Catherine C McGeoch. 2020. Theory versus practice in annealing-based quantum computing. Theoretical Computer Science 816 (2020), 169-183.
  137. Albert Messiah. 1962. Quantum mechanics: volume II. North-Holland Publishing Company Amsterdam.
  138. Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, Jerry M Chow, Andrew Cross, Daniel J Egger, Stefan Filipp, Andreas Fuhrer, Jay M Gambetta, Marc Ganzhorn, et al. 2018. Quantum optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology 3, 3 (2018), 030503.
  139. Yasunobu Nakamura, Yu A Pashkin, and Jaw Shen Tsai. 1999. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 6730 (1999), 786-788.
  140. Ajit Narayanan and Tammy Menneer. 2000. Quantum artificial neural network architectures and components. Information Sciences 128, 3-4 (2000), 231-255.
  141. Michael A Nielsen, Isaac Chuang, MA Nielsen, and IL Chuang. 2002. Quantum Computation and Quantum Information. Cambridge University Press.
  142. Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).
  143. JS Otterbach, R Manenti, N Alidoust, A Bestwick, M Block, B Bloom, S Caldwell, N Didier, E Schuyler Fried, S Hong, et al. 2017. Unsupervised machine learning on a hybrid quantum computer. arXiv preprint arXiv:1712.05771 (2017).
  144. Adam Paetznick and Krysta M Svore. 2014. Repeat-until-success: non-deterministic decomposition of single-qubit unitaries. Quantum Information & Computation 14, 15-16 (2014), 1277-1301.
  145. Anargyros Papageorgiou and Joseph F Traub. 2013. Measures of quantum computing speedup. Physical Review A 88, 2 (2013), 022316.
  146. Gheorghe Sorin Paraoanu. 2014. Recent progress in quantum simulation using superconducting circuits. Journal of Low Temperature Physics 175, 5 (2014), 633-654.
  147. Edwin Pednault, John A Gunnels, Giacomo Nannicini, Lior Horesh, and Robert Wisnieff. 2019. Leveraging secondary storage to simulate deep 54-qubit sycamore circuits. arXiv preprint arXiv:1910.09534 (2019).
  148. Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José I Latorre. 2020. Data re-uploading for a universal quantum classifier. Quantum 4 (2020), 226.
  149. Adrián Pérez-Salinas, Juan Cruz-Martinez, Abdulla A Alhajri, and Stefano Carrazza. 2021. Determining the proton content with a quantum computer. Physical Review D 103, 3 (2021), 034027.
  150. Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O'brien. 2014. A variational eigenvalue solver on a photonic quantum processor. Nature communications 5, 1 (2014), 1-7.
  151. Michael J Peterer, Samuel J Bader, Xiaoyue Jin, Fei Yan, Archana Kamal, Theodore J Gudmundsen, Peter J Leek, Terry P Orlando, William D Oliver, and Simon Gustavsson. 2015. Coherence and decay of higher energy levels of a superconducting transmon qubit. Physical review letters 114, 1 (2015), 010501.
  152. John Preskill. 2012. Quantum computing and the entanglement frontier. arXiv preprint arXiv:1203.5813 (2012).
  153. John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum 2 (2018), 79.
  154. Saleh Rahimi-Keshari, Timothy C Ralph, and Carlton M Caves. 2016. Sufficient conditions for efficient classical simulation of quantum optics. Physical Review X 6, 2 (2016), 021039.
  155. Somayeh Bakhtiari Ramezani, Alexander Sommers, Harish Kumar Manchukonda, Shahram Rahimi, and Amin Amirlatifi. 2020. Machine learning algorithms in quantum computing: A survey. In 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 1-8.
  156. Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. 2014. Quantum support vector machine for big data classification. Physical review letters 113, 13 (2014), 130503.
  157. Markus Reiher, Nathan Wiebe, Krysta M Svore, Dave Wecker, and Matthias Troyer. 2017. Elucidating reaction mechanisms on quantum computers. Proceedings of the National Academy of Sciences 114, 29 (2017), 7555-7560.
  158. Jonathan Romero and Alán Aspuru-Guzik. 2021. Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions. Advanced Quantum Technologies 4, 1 (2021), 2000003.
  159. Jonathan Romero, Jonathan P Olson, and Alan Aspuru-Guzik. 2017. Quantum autoencoders for efficient compression of quantum data. Quantum Science and Technology 2, 4 (2017), 045001.
  160. Troels F Rønnow, Zhihui Wang, Joshua Job, Sergio Boixo, Sergei V Isakov, David Wecker, John M Martinis, Daniel A Lidar, and Matthias Troyer. 2014. Defining and detecting quantum speedup. science 345, 6195 (2014), 420-424.
  161. Frank Rosenblatt. 1957. The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory.
  162. Matteo Rossi, Marcus Huber, Dagmar Bruß, and Chiara Macchiavello. 2013. Quantum hypergraph states. New Journal of Physics 15, 11 (2013), 113022.
  163. Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016).
  164. Giuseppe E Santoro, Roman Martoňák, Erio Tosatti, and Roberto Car. 2002. Theory of quantum annealing of an Ising spin glass. Science 295, 5564 (2002), 2427-2430.
  165. MM Savchuk and AV Fesenko. 2019. Quantum Computing: Survey and Analysis. Cybernetics and Systems Analysis 55, 1 (2019), 10-21.
  166. Erwin Schrödinger. 1926. Quantisierung als eigenwertproblem. Annalen der Physik 385, 13 (1926), 437-490.
  167. Maria Schuld. 2018. Supervised learning with quantum computers. Springer.
  168. Maria Schuld, Alex Bocharov, Krysta M Svore, and Nathan Wiebe. 2020. Circuit-centric quantum classifiers. Physical Review A 101, 3 (2020), 032308.
  169. Maria Schuld and Nathan Killoran. 2019. Quantum machine learning in feature Hilbert spaces. Physical review letters 122, 4 (2019), 040504.
  170. Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. 2014. The quest for a quantum neural network. Quantum Information Processing 13, 11 (2014), 2567-2586.
  171. Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. 2015. An introduction to quantum machine learning. Contemporary Physics 56, 2 (2015), 172-185.
  172. Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. 2015. Simulating a perceptron on a quantum computer. Physics Letters A 379, 7 (2015), 660-663.
  173. Dan Shepherd and Michael J Bremner. 2009. Temporally unstructured quantum computation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, 2105 (2009), 1413-1439.
  174. Y-Y Shi, L-M Duan, and Guifre Vidal. 2006. Classical simulation of quantum many-body systems with a tree tensor network. Physical Review A 74, 2 (2006), 022320.
  175. Peter W Shor. 1994. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th annual symposium on foundations of computer science. Ieee, 124-134.
  176. Peter W Shor. 1999. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review 41, 2 (1999), 303-332.
  177. Adenilton J Silva, Teresa B Ludermir, and Wilson R de Oliveira Jr. 2010. Superposition based learning algorithm. In 2010 Eleventh Brazilian Symposium on Neural Networks. IEEE, 1-6.
  178. David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. 2018. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 6419 (2018), 1140-1144.
  179. Kaitlin N Smith and Mitchell A Thornton. 2018. Automated mapping methods for the ibm transmon devices. In International Workshop on Post-Binary ULSI Systems (ULSI-WS). 12-17.
  180. Kihyuk Sohn. 2016. Improved deep metric learning with multi-class n-pair loss objective. In Proceedings of the 30th International Conference on Neural Information Processing Systems. 1857-1865.
  181. Igor I Soloviev, Andrey E Schegolev, Nikolay V Klenov, Sergey V Bakurskiy, Mikhail Yu Kupriyanov, Maxim V Tereshonok, Anton V Shadrin, Vasily S Stolyarov, and Alexander A Golubov. 2018. Adiabatic superconducting artificial neural network: Basic cells. Journal of Applied Physics 124, 15 (2018), 152113.
  182. Alessandro Sperduti and Antonina Starita. 1997. Supervised neural networks for the classification of structures. IEEE Transactions on Neural Networks 8, 3 (1997), 714-735.
  183. Francesco Tacchino, Chiara Macchiavello, Dario Gerace, and Daniele Bajoni. 2019. An artificial neuron implemented on an actual quantum processor. npj Quantum Information 5, 1 (2019), 1-8.
  184. Barbara M. Terhal and David P. DiVincenzo. 2004. Adptive Quantum Computation, Constant Depth Quantum Circuits and Arthur-Merlin Games. Quantum Information & Computation 4, 2 (March 2004), 134-145.
  185. Adel Nadjaran Toosi, Rodrigo N Calheiros, and Rajkumar Buyya. 2014. Interconnected cloud computing environments: Challenges, taxonomy, and survey. ACM Computing Surveys (CSUR) 47, 1 (2014), 1-47.
  186. Erik Torrontegui and Juan José García-Ripoll. 2019. Unitary quantum perceptron as efficient universal approximator. Europhysics Letters (EPL) 125, 3 (2019), 30004.
  187. Géza Tóth, Craig S Lent, P Douglas Tougaw, Yuriy Brazhnik, Weiwen Weng, Wolfgang Porod, Ruey-Wen Liu, and Yih-Fang Huang. 1996. Quantum cellular neural networks. Superlattices and Microstructures 20, 4 (1996), 473-478.
  188. Dan Ventura and Tony Martinez. 2000. Quantum associative memory. Information Sciences 124, 1-4 (2000), 273-296.
  189. Guillaume Verdon, Trevor McCourt, Enxhell Luzhnica, Vikash Singh, Stefan Leichenauer, and Jack Hidary. 2019. Quantum graph neural networks. arXiv preprint arXiv:1909.12264 (2019).
  190. Guifré Vidal. 2008. Class of quantum many-body states that can be efficiently simulated. Physical review letters 101, 11 (2008), 110501.
  191. C Vu. 2016. IBM makes quantum computing available on IBM cloud to accelerate innovation. IBM News Room (2016).
  192. Kwok Ho Wan, Oscar Dahlsten, Hlér Kristjánsson, Robert Gardner, and MS Kim. 2017. Quantum generalisation of feedforward neural networks. npj Quantum information 3, 1 (2017), 1-8.
  193. Daochen Wang, Oscar Higgott, and Stephen Brierley. 2019. Accelerated variational quantum eigensolver. Physical review letters 122, 14 (2019), 140504.
  194. Dave Wecker, Matthew B Hastings, Nathan Wiebe, Bryan K Clark, Chetan Nayak, and Matthias Troyer. 2015. Solving strongly correlated electron models on a quantum computer. Physical Review A 92, 6 (2015), 062318.
  195. Göran Wendin. 2017. Quantum information processing with superconducting circuits: a review. Reports on Progress in Physics 80, 10 (2017), 106001.
  196. Nathan Wiebe, Ashish Kapoor, and Krysta M Svore. 2018. Quantum Perceptron Models. In 30th Conference on Neural Information Processing Systems (NIPS 2016).
  197. RC Wiersema and HJ Kappen. 2019. Implementing perceptron models with qubits. Physical Review A 100, 2 (2019), 020301.
  198. Peter Wittek. 2014. Quantum machine learning: what quantum computing means to data mining. Academic Press.
  199. Yao Zhang and Qiang Ni. 2020. Recent advances in quantum machine learning. Quantum Engineering 2, 1 (2020), e34.
  200. Yarui Zheng, Chao Song, Ming-Cheng Chen, Benxiang Xia, Wuxin Liu, Qiujiang Guo, Libo Zhang, Da Xu, Hui Deng, Keqiang Huang, et al. 2017. Solving systems of linear equations with a superconducting quantum processor. Physical review letters 118, 21 (2017), 210504.
  201. Yiqing Zhou, E Miles Stoudenmire, and Xavier Waintal. 2020. What limits the simulation of quantum computers? Physical Review X 10, 4 (2020), 041038.