Universal discriminative quantum neural networks
2020, Quantum Machine Intelligence
https://doi.org/10.1007/S42484-020-00025-7Abstract
Recent results have demonstrated the successful applications of quantum-classical hybrid methods to train quantum circuits for a variety of machine learning tasks. A natural question to ask is consequentially whether we can also train such quantum circuits to discriminate quantum data, i.e., perform classification on data stored in form of quantum states. Although quantum mechanics fundamentally forbids deterministic discrimination of non-orthogonal states, we show in this work that it is possible to train a quantum circuit to discriminate such data with a trade-off between minimizing error rates and inconclusiveness rates of the classification tasks. Our approach achieves at the same time a performance which is close to the theoretically optimal values and a generalization ability to previously unseen quantum data. This generalization power hence distinguishes our work from previous circuit optimization results and furthermore provides an example of a quantum machine learning task ...
References (43)
- Amin MH, Andriyash E, Rolfe J, Kulchytskyy B, Melko R (2018) Quantum Boltzmann machine. Physical Review X 8(2):021050. https://doi.org/10.1103/physrevx.8.021050
- 1 This assumes that the cost function follows a normal distribution with variance of the order 1
- √ N , where N is the number of measurements made in reach run in order to calculate the cost function. Banchi L, Pancotti N, Bose S (2016) Quantum gate learning in qubit networks: Toffoli gate without time-dependent control. Npj Quantum Inf 2:16019
- Barnett SM, Croke S (2009) Quantum state discrimination. Adv Opt Photonics 1(2):238. https://www.osapublishing.org/aop/abstract. cfm?uri=aop-1-2-238
- Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro JH, Pirandola S (2015) Microwave quantum illumination. Phys Rev Lett 114(8):080503. https://doi.org/10.1103/physrevlett.114.080503
- Bennett CH (1992a) Quantum cryptography using any two nonorthog- onal states. Phys Rev Lett 68(21):3121
- Bennett CH (1992b) Quantum cryptography using any two nonorthogonal states. Phys Rev Lett 68(21):3121-3124. https://doi.org/10.1103/physrevlett.68.3121
- Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S (2017) Quantum machine learning. Nature 549(7671):195-202. https://doi.org/10.1038/nature23474
- Chefles A (2000) Quantum state discrimination. Contemp Phys 41(6):401-424
- Ciliberto C, Herbster M, Ialongo AD, Pontil M, Rocchetto A, Severini S, Wossnig L (2018) Quantum machine learning: a classical perspective. Proc R Soc A 474(2209):20170551
- Cong I, Choi S, Lukin MD (2019) Quantum convolu- tional neural networks. Nat Phys 15(12):1273-1278. https://doi.org/10.1038/s41567-019-0648-8
- Degen C, Reinhard F, Cappellaro P (2017) Quantum sensing. Rev Mod Phys 89(3):035002. https://doi.org/10.1103/revmodphys.89. 035002
- Duan LM, Guo GC (1998) Probabilistic cloning and identification of linearly independent quantum states. Phys Rev Lett 80(22):4999
- Fanizza M, Mari A, Giovannetti V (2018) Optimal universal learning machines for quantum state discrimination. arXiv:180503477
- Farhi E, Neven H (2018) Classification with quantum neural networks on near term processors. arXiv:180206002
- Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672-2680
- Grant E, Benedetti M, Cao S, Hallam A, Lockhart J, Stojevic V, Green AG, Severini S (2018) Hierarchical quantum classifiers. arXiv:180403680
- Innocenti L, Banchi L, Ferraro A, Bose S, Paternostro M (2018) Supervised learning of time-independent Hamiltonians for gate design. arXiv:180307119
- Iten R, Colbeck R, Christandl M (2016) Quantum circuits for quantum channels. Phys Rev A Atom Mol Opt Phys 93(3):052316. https://doi.org/10.1103/PhysRevA.95.052316, arXiv:1609.08103
- Iten R, Colbeck R, Kukuljan I, Home J, Christandl M (2015) Quantum circuits for isometries. Physical Review A -Atomic, Molecular, and Optical Physics. https://doi.org/10.1103/PhysRevA.93.032318. arXiv:1501.06911
- Karzig T, Knapp C, Lutchyn RM, Bonderson P, Hastings MB, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus CM, Freedman MH (2017) Scalable designs for quasiparticle-poisoning-protected topological quantum computa- tion with Majorana zero modes. Phys Rev B 95(23):235305. https://doi.org/10.1103/physrevb.95.235305
- Khatri S, LaRose R, Poremba A, Cincio L, Sornborger AT, Coles PJ (2019) Quantum-assisted quantum compiling. Quantum 3:140. https://doi.org/10.22331/q-2019-05-13-140
- Kimble HJ (2008) The quantum Internet. Nature 453(7198):1023- 1030. https://doi.org/10.1038/nature07127
- Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980
- Kübler JM, Arrasmith A, Cincio L, Coles PJ (2019) An adap- tive optimizer for measurement-frugal variational algorithms. arXiv:1909.09083
- Li Y, Benjamin SC (2017) Efficient variational quantum simulator incorporating active error minimization. Phys Rev X 7(2):021050
- Lloyd S, Weedbrook C (2018) Quantum generative adversarial learning. Phys Rev Lett 121(4):040502. htps:/doi.org/10.1103/ physrevlett.121.040502
- Mitarai K, Negoro M, Kitagawa M, Fujii K (2018) Quantum circuit learning. arXiv:180300745
- Mohseni M, Steinberg AM, Bergou JA (2004) Optical real- ization of optimal unambiguous discrimination for pure and mixed quantum states. Phys Rev Lett 93(20):200403. https://doi.org/10.1103/PhysRevLett.93.200403, 0401002
- Ostaszewski M, Grant E, Benedetti M (2019) Quantum circuit structure learning. arXiv:1905.09692
- Qi XL, Zhang SC (2011) Topological insulators and superconduc- tors. Rev Mod Phys 83(4):1057-1110. https://doi.org/10.1103/ revmodphys.83.1057
- Raynal P, Lütkenhaus N, van Enk SJ (2003) Reduction theorems for optimal unambiguous state discrimination of density matri- ces. Phys Rev A 68:022308. https://doi.org/10.1103/PhysRevA. 68.022308. arXiv:0304179
- Ren JG, Xu P, Yong HL, Zhang L, Liao SK, Yin J, Liu WY, Cai WQ, Yang M, Li L, Yang KX, Han X, Yao YQ, Li J, Wu HY, Wan S, Liu L, Liu DQ, Kuang YW, He ZP, Shang P, Guo C, Zheng RH, Tian K, Zhu ZC, Liu NL, Lu CY, Shu R, Chen YA, Peng CZ, Wang JY, Pan JW (2017) Ground-to-satellite quantum teleportation. Nature 549(7670):70-73. https://doi.org/10.1038/nature23675
- Rocchetto A, Grant E, Strelchuk S, Carleo G, Severini S (2018) Learning hard quantum distributions with variational autoen- coders. npj Quantum Information 4(1), https://doi.org/10.1038/ s41534-018-0077-z, arXiv:1710.00725
- Romero J, Olson JP, Aspuru-Guzik A (2017) Quantum autoencoders for efficient compression of quantum data. Quantum Sci Technol 2(4):045001
- Schaller G, Schützhold R (2006) Quantum algorithm for optical- template recognition with noise filtering. Phys Rev A 74(1):012303. https://doi.org/10.1103/physreva.74.012303
- Schuld M, Bocharov A, Svore K, Wiebe N (2018) Circuit-centric quantum classifiers. arXiv:180400633
- Shende VV, Bullock SS, Markov IL (2006) Synthesis of quantum logic circuits. IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems p 18, https://doi.org/10.1109/TCAD.2005.855930, arXiv:0406176
- Shende VV, Markov IL, Bullock SS (2004) Smaller two-qubit circuits for quantum communication and computation. In: Proceedings - Design automation and test in Europe conference and exhibition, vol 2, pp 980-985. https://doi.org/10.1109/DATE.2004.1269020
- Sønderby CK, Raiko T, Maaløe L, Sønderby SK, Winther O (2016) Ladder variational autoencoders. arXiv:1602.02282
- Verdon G, Broughton M, Biamonte J (2017) A quantum algorithm to train neural networks using low-depth circuits. arXiv:171205304
- Wan KH, Dahlsten O, Kristjánsson H, Gardner R, Kim M (2017) Quantum generalisation of feedforward neural networks. npj Quantum Inf 3(1):36
- Xu X, Sun J, Endo S, Li Y, Benjamin SC, Yuan X (2019) Variational algorithms for linear algebra. arXiv:1909.03898