THEORY OF MODERN ELECTRONIC SEMICONDUCTOR DEVICES
https://doi.org/10.1002/0471224618Abstract
AI
AI
The paper discusses the advancements in modern electronic semiconductor devices, particularly focusing on miniaturization, fabrication challenges, and the physical limits of device performance. The exploration includes the role of compound semiconductors in high-frequency applications and the significance of quantum mechanical effects on device functionality. It emphasizes the need for innovative device structures to sustain growth in microelectronics amidst evolving demands in computing and communication technologies.
References (211)
- Numbers in parentheses at the end of sources indicate chapter(s) for which a source has been consulted.
- Ambacher, O., Foutz, B., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Sierakowski, A. J., Schaff, W. J., Eastman, L. F., Dimitrov, R., Mitchell, A., and Stutzmann, M. (2000). Two dimensional electron gases in- duced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys., 87, 334-44. (2)
- Asai, S., and Wada, Y. (1997). Technology challenges for integration near and below 0.1 ¹m. Proc. IEEE, 85, 505-20. (7)
- Asbeck, Peter (2000). III-V HBTs for microwave applications: technology status and modeling challenges. Proc. Bipolar/BiCMOS Circuits and Tech- nology Meeting, pp. 33-40. (4)
- Asbeck, P. M., Yu, E. T., Lau, S. S., Sullivan, G. J., Van Hove, J., and Redwing, J. (1997). Piezoelectric charge densities in AlGaN/GaN HFETs. Electron. Lett., 33, 1230-31. (2)
- Baccarani, G., Wordeman, M. R., and Dennard, R. H. (1984). Generalized scaling theory and its application to a 1 4 micrometer MOSFET design. IEEE Trans. Electron Devices, ED-31, 452-62.
- Bakshi, P., Broido, D. A., and Kempa, K. (1991). Spontaneous polarization of electrons in quantum dashes. J. Appl. Phys., 70, 5150-52. (8)
- Bandyopadhyay, S., Das, B., and Miller, A. E. (1994). Supercomputing with spin-polarized single electrons in a quantum coupled architecture. Nan- otechnology, 5, 113-33. (8) REFERENCES
- Barnes, F. S., Su, W.-H., and Brennan, K. F. (1987). A potentially low-noise avalanche diode microwave amplifier. IEEE Trans. Electron Devices, ED-34, 966-72. (5)
- Bean, J. C. (1990) Materials and technologies, in High Speed Semiconductor Devices, edited by S. M. Sze. New York: Wiley. (2)
- Bhattacharya, P. (1997). Semiconductor Optotelectronic Devices, 2nd ed., Up- per Saddle River, NJ: Prentice Hall. (2)
- Birnbaum, J., and Williams, R. S. (2000). Physics and the information revo- lution. Phys. Today, Jan.
- Brennan, K. F. (1999). The Physics of Semiconductors with Applications to Optoelectronic Devices, Cambridge: Cambridge University Press. (2-9)
- Brennan, K. F., and Haralson, J., II (2000). Superlattice and multiquantum well avalanche photodetectors: physics, concepts and performance. Superlattices Microstruct. 28, 77-104. (7)
- Brennan, K., and Hess, K. (1983). Transient electronic transport in staircase heterostructures. IEEE Electron Devices Lett., EDL-4, 419-21. (4)
- Brennan, K., and Hess, K. (1984). High field transport in GaAs, InP and InAs. Solid-State Electron., 27, 347-57. (5)
- Brennan, K., and Hess, K. (1986). A theory of enhanced impact ionization due to the gate field and mobility degradation in the inversion layer of MOSFETs. IEEE Electron Devices Lett., EDL-7, 86-88. (7)
- Brennan, K. F., and Mansour, N. S. (1991). Monte Carlo calculation of electron impact ionization in bulk InAs and HgCdTe. J. Appl. Phys., 69, 7844-47.
- Brennan, K. F., and Park, D. H. (1989). Theoretical comparison of electron real-space transfer in classical and quantum two-dimensional heterostruc- ture systems. J. Appl. Phys., 65, 1156-63. (5)
- Brennan, K. F., and Ruden, P. P., Eds. (2001). Topics in High Field Transport in Semiconductors. Singapore: World Scientific. (6)
- Brennan, K., Hess, K., Tang, J. Y.-F., and Iafrate, G. J. (1983). Transient elec- tronic transport in InP under the condition of high-energy electron injection. IEEE Trans. Electron Devices, ED-30, 1750-54. (4)
- Brews, J. R. (1990). The submicron MOSFET, in High Speed Semiconductor Devices, edited by S. M. Sze. New York: Wiley. (7)
- Bykhovski, A., Gelmont, B., and Shur, M. (1993). The influence of the strain- induced electric field on the charge distribution in GaN-AlN-GaN struc- ture. J. Appl. Phys., 74, 6734-39. (2)
- Bykhovski, A., Gelmont, B., and Shur, M. (1997). Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN, and GaN-InGaN superlattices. J. Appl. Phys., 81, 6332-38. (2)
- Calecki, D., Palmier, J. F., and Chomette, A. (1984). Hopping conduction in multiquantum well structures. J. Phys. C: Solid State Phys., 17, 5017-30.
- Capasso, F., and Datta, S. (1990). Quantum electron devices. Phys. Today, 43, 74-82. (6)
- Capasso, F., and Kiehl, R. A. (1985). Resonant tunneling transistor with quan- tum well base and high-energy injection: a new negative differential resis- tance device. J. Appl. Phys., 58, 1366-72. (6)
- Capasso, F., Tsang, W. T., and Williams, G. F. (1983). Staircase solid-state photomultipliers and avalanche photodiodes with enhanced ionization rates ratio. IEEE Trans. Electron Devices, ED-30, 381-90. (5)
- Capasso, F., Mohammed, K., and Cho, A. Y. (1986a). Sequential resonant tunneling through a multiquantum well superlattice. Appl. Phys. Lett., 48, 478-80. (6)
- Capasso, F., Sen. S., Gossard, A. C., Hutchinson, A. L., and English, J. H. (1986b). Quantum-well resonant tunneling bipolar transistor operating at room temperature. IEEE Electron Devices Lett., EDL-7, 573-76. (6)
- Capasso, F., Sen, S., Beltram, F., Lunardi, L. M., Vengurlekar, A. S., Smith, P. R., Shah, N. J., Malik, R. J., and Cho, A. Y. (1989). Quantum functional devices: resonant tunneling transistors, circuits with reduced complexity, and multiple-valued logic. IEEE Trans. Electron Devices, ED-36, 2065-81.
- Capasso, F., Sen, S., Lunardi, L. M., and Cho, A. Y. (1991). Quantum tran- sistors and circuits break through the barriers. Circuits Devices, 18-25. (6)
- Chang, M. F. (1996). Current Trends in Heterojunction Bipolar Transistors. Singapore: World Scientific. (App. C)
- Chang, L. L., Esaki, L., and Tsu, R. (1974). Resonant tunneling in semicon- ductor double barriers. Appl. Phys. Lett., 24, 593-95. (6)
- Chen, Y. C., Chin, P., Ingram, D., Lai, R., Grundbacher, R., Barsky, M., Block, T., Wojtowicz, M., Tran, L., Medvedev, V., Yen, H. C., Streit, D. C., and Brown, A. (1999). Composite-channel InP HEMT for W-band power am- plifiers. Proc. International Conference on Indium Phosphide and Related Materials.
- Collier, C. P., Wong, E. W., Belohradsky, M., Raymo, F. M., Stoddart, J. F., Kuekes, P. J., Williams, R. S., and Heath, J. R. (1999). Electronically con- figurable molecular-based logic gates. Science, 285, 391-93. (8)
- Conrad, M. (1986). The lure of molecular computing. IEEE Spectrum, 55-60.
- Cowles, J., Metzger, R. A., Guitierrez-Aitken, Brown, A. S., Streit, D., Oki, A., Kim, T., and Doolittle, A. (1997). Double heterojunction bipolar transistors with InP epitaxial layer grown by solid-source MBE. Proc. International Conference on Indium Phosphide and Related Materials, pp. 133-36. (4)
- Critchlow, D. L. (1999). MOSFET scaling: the driver of VLSI technology. Proc. IEEE, 87, 659-67. (7) REFERENCES
- Dagnall, G. (2000). Solid source molecular beam epitaxial growth of 1.55-¹m InAsP/InGaAsP edge-emitting lasers. Ph.D. dissertation, Georgia Institute of Technology. (2)
- Datta, S. (1989). Quantum Phenomena. Reading, MA: Addison-Wesley. (6)
- Datta, S. (1995). Electronic Transport in Mesoscopic Systems. Cambridge: Cam- bridge University Press. (6)
- Del Alamo, J. A., and Somerville, M. A. (1999). Breakdown in millimeter wave power InP HEMT's: a comparision with GaAs PHEMTs. IEEE J. Solid-State Circuits, 34 (9), 1204-11. (3)
- d'Espagnat, B. (1979). The quantum theory and reality. Sci. Am., Nov., pp. 158-79. (8)
- Dingle, R., Stormer, H. L., Gossard, A. C., and Wiegmann, W. (1978). Electron mobilities in modulation-doped semiconductor heterojunction superlattices. 33, 6657. (2)
- Dingle, R., Stormer, H. L., Gossard, A. C., and Wiegmann, W. (1980). Elec- tronic properties of the GaAs-AlGaAs interface with applications to multi- interface heterojunction superlattices. 98, 90-100. (2)
- Doshi, B., Brennan, K. F., Bicknell-Tassius, R., and Grunthaner, F. (1998). The effect of strain-induced polarization fields on impact ionization in a multiquantum well structure. Appl. Phys. Lett., 73, 2784-86. (2)
- Duncan, A., Ravaioli, U., and Jakumeit, J. (1998). Full-band Monte Carlo in- vestigation of hot carrier trends in the scaling of metal-oxide-semiconductor field-effect transistors. IEEE Trans. Electron Devices, ED-45, 867-75. (7)
- Eisenstein, J. P., and Stormer, H. L. (1990). The fractional quantum Hall effect. Science, 248, 1510-16. (9)
- Ellenbogen, J. C., and Love, J. C. (2000). Architectures for molecular elec- tronic computers. 1. Logic structures and an adder designed from molecular electronic diodes. Proc. IEEE, 88, 386-426. (8)
- Fawcett, W., Boardman, A. D., and Swain, S. (1970). Monte Carlo determi- nation of electron transport in gallium arsenide. J. Phys. Chem. Solids, 31, 1963-90. (5)
- Ferry, D. K. (1991). Semiconductors. New York: Macmillan. (6)
- Ferry, D. K., and Barker, J. R. (1999). Issues in general quantum transport with complex potentials. Appl Phys. Lett., 74, 582-84. (9)
- Ferry, D. K., and Goodnick, S. M. (1997). Transport in Nanostructures. Cam- bridge: Cambridge University Press. (8)
- Fichtner, W., and Potzl, H. W. (1979). MOS modelling by analytical approxi- mations. I. Subthreshold current and threshold voltage. Int. J. Electron., 46, 33-55.
- Fiegna, C., Iwai, H., Wada, T., Saito, M., Sangiorgi, E., and Ricco, B. (1994). Scaling the MOS transistor below 0.1 ¹m: methodology, device structures, and technology requirements. IEEE Trans. Electron Devices, ED-41, 941- 50. (7)
- Frensley, W. R. (1987). Wigner-function model of a resonant-tunneling semi- conductor device. Phys. Rev. B, 36, 1570-80. (6)
- Gaylord, T. K., and Brennan, K. F. (1988). Semiconductor superlattice electron wave interference filters. Appl. Phys. Lett., 53, 2047-49. (2)
- Gaylord, T. K., and Brennan, K. F. (1989). Electron wave optics in semicon- ductors. J. Appl. Phys., 65, 814-20. (2)
- Gelmont, B. L., Shur, M., and Stroscio, M. (1995). Polar optical-phonon scat- tering in three-and two-dimensional electron gases. J. Appl. Phys., 77, 657- 60. (2)
- Gershenfeld, N., and Chuang, I. L. (1998). Quantum computing with mole- cules. Sci. Am., www.sciam.com/1998/0698issue/0698gershenfeld.html (8)
- Gilden, M., and Hines, M. E. (1966). Electronic tuning effects in the Read microwave avalanche diode. IEEE Trans. Electron Devices, ED-13, 169-75.
- Golio, J. M. (1995). Commercial cellular phones and microwaves. Compound Semicond., Sept./Oct. (1)
- Golio, J. M. (2000). Low voltage/low power microwave electronics. IEEE Microwave Theory and Techniques Distinguished Lecture. (1)
- Gribnikov, Z. S. (1972). Fiz. Tekh. Poluprovodn., 3, 1169 (in Russian). (5)
- Grotjohn, T., and Hoefflinger, B. (1984). A parametric short-channel MOS transistor model for subthreshold and strong inversion current. IEEE Trans. Electron Devices, ED-31, 234-46. (7)
- Grover, L. K. (1997). Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 79, 325-28. (8)
- Gunn, J. B. (1963). Microwave oscillations of current in III-V semiconductors. Solid-State Commun., 1, 88-91. (5)
- Haddad, G. I., and Mazumder, P. (1997). Tunneling devices and applications in high functionality/speed digital circuits. Solid-State Electron., 41, 1515-24.
- Haddad, G. I., Greiling, P. T., and Schroeder, W. E. (1970). Basic principles and properties of avalanche transit-time diodes. IEEE Trans. Microwave Theory Tech., MTT-18, 752-72. (5)
- Halperin, B. I. (1982). Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B, 25, 2185-90. (9)
- Haroche, S., and Raimond, J.-M. (1996). Quantum computing: dream or night- mare? Phys. Today, Aug., pp. 51-52. (8)
- Heath, J. R., Kuekes, P. J., Snider, G. S., and Williams, R. S. (1998). A defect- tolerant computer architecture: opportunities for nanotechnology. Science, 280, 1716-21.
- Hess, K. (1988). Advanced Theory of Semiconductor Devices. Upper Saddle River, NJ: Prentice Hall. (2) REFERENCES
- Hess, K., Morkoc, H., Shichijo, H., and Streetman, B. G. (1979). Negative differential resistance through real-space electron transfer. Appl. Phys. Lett., 35, 469-71. (5)
- Hilsum, C. (1962). Transferred electron amplifiers and oscillators. Proc. IRE, 50, 185-89. (5)
- Hsu, L., and Walukiewicz, W. (1997). Electron mobility in Al x Ga 1"x N/GaN heterostructures. Phys. Rev. B, 56, 1520-28. (2)
- Ibbetson, J. P., Fini, P. T., Ness, K. D., DenBaars, S. P., Speck, J. S., and Mishra, U. K. (2000). Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett., 77, 250-52. (2)
- Ismail, K., Meyerson, B. S., and Wang, P. J. (1991). High electron mobility in modulation-doped Si/SiGe. Appl. Phys. Lett., 58, 2117-19. (8)
- Ismail, K., Nelson, S. F., Chu, J. O., and Meyerson, B. S. (1993). Electron transport properties of Si/SiGe heterostructures: measurements and device implications. Appl. Phys. Lett., 63, 660-62. (8)
- Jacoboni C., and Lugli, P. (1989). The Monte Carlo Method for Semiconductor Device Simulation. Vienna: Springer-Verlag. (5)
- Jain, J. K. (1992). Microscopic theory of the fractional quantum Hall effect. Adv. in Phys., 41, 105-46. (9)
- Kang, S., Doolittle, A., Lee, K. K., Dai, Z. R., Wang, Z. L, Stock, S. R., and Brown, A. S. (2000). Characterization of AlGaN/GaN structures on vari- ous substrates grown by radio frequency plasma assisted molecular beam epitaxy. J. Electron. Mater., 30, 156-61. (2)
- Kastalsky, A., and Luryi, S. (1983). Novel real-space hot-electron transfer devices. IEEE Electron Devices Lett., EDL-4, 334-36. (5)
- Kastner, M. A. (1992). The single-electron transistor. Rev. Mod. Phys., 64, 849-58. (8)
- Kawamura, T., and Das Sarma, S. (1992). Phonon-scattering-limited electron mobilities in Al x Ga 1"x As/GaAs heterojunctions. Phys. Rev. B, 45, 3612-27.
- Kim, T.-H. (2000). Growth and characterization of InP-based high electron mobility transistors. Ph.D. dissertation, Georgia Institute of Technology.
- Kluksdahl, N. C., Kriman, A. M., Ferry, D. K., and Ringhofer, C. (1989). Self- consistent study of the resonant-tunneling diode. Phys. Rev. B, 39, 7720-35.
- Kohn, W., and Luttinger, J. M. (1957). Quantum theory of electrical transport phenomena. Phys. Rev., 108, 590-611. (6)
- Krieger, J. B., and Iafrate, G. J. (1986). Time evolution of Bloch electrons in a homogeneous electric field. Phys. Rev. B, 33, 5494-5500. (6)
- Kroemer, H. (1964). The theory of the Gunn effect. Proc. IEEE, 52, 1736. (5)
- Kroemer, H. (1982). Heterostructure bipolar transistors and integrated circuits. Proc. IEEE, 70, 13-25. (4)
- Kuech, T. F., Collins, R. T., Smith, D. L., and Mailhiot, C. (1990). Field-effect transistor structure based on strain-induced polarization charges. J. Appl. Phys., 67, 2650-52. (2,3)
- Landau, L. D., and Lifshitz, E. M. (1977). Quantum Mechanics: Non-relativistic Theory. Oxford: Pergamon Press. (9)
- Larson, L. (1997). Integrated circuit technology options for RFIC's: present status and future directions. Proc. IEEE 1997 Custom Integrated Circuits Conference, pp. 169-75. (3)
- Laughlin, R. B. (1981). Quantized Hall conductivity in two dimensions. Phys. Rev. B, 23, 5632-33. (9)
- Laughlin, R. B. (1987). Elementary theory: the incompressible quantum fluid, in The Quantum Hall Effect, edited by R. E. Prange and S. M. Girvin. Berlin: Springer-Verlag, pp. 233-302. (9)
- Laux, S. E., and Fischetti, M. V. (1988). Monte-Carlo simulation of submi- crometer Si n-MOSFETs at 77 and 300 K. IEEE Electron Devices Lett., EDL-9, 467-69. (7)
- Lent, C. S., and Tougaw, P. D. (1997). A device architecture for computing with quantum dots. Proc. IEEE, 85, 541-57. (8)
- Lew, A. Y., Zuo, S. L., Yu, E. T., and Miles, R. H. (1998). Correlation be- tween atomic-scale structure and mobility anisotropy in InAs/GaInSb su- perlattices. Phys. Rev. B, 57, 6534-39. (2)
- Liboff, R. L. (1992). Introductory Quantum Mechanics, 2nd ed., Reading MA: Addison-Wesley.
- Liu, W. (1999). Fundamentals of III-V Devices, HBTs, MESFETs, and HFETs/ HEMTs. New York: Wiley-Interscience. (3,4)
- Liu, H. C., and Sollner, T. C. L. G. (1994). High-frequency resonant-tunneling devices, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer. San Diego, CA: Academic Press, pp. 359-419. (6)
- Liu, R., Pai, C.-S., and Martinez, E. (1999). Interconnect technology trend for microelectronics. Solid-State Electron., 43, 1003-9. (7)
- Lloyd, S. (1993). A potentially realizable quantum computer. Science, 261, 1569-71. (8)
- Lloyd, S. (2000). Ultimate physical limits to computation. Nature, 406, 1047- 54.
- Lundstrom, M. (2000). Fundamentals of Carrier Transport. Cambridge: Cam- bridge University Press. (5)
- Luryi, S. (1985). Frequency limit of double-barrier resonant-tunneling oscil- lators. App. Phys. Lett., 47, 490-92.
- Madelung, O., Ed. (1991). Semiconductors: Group IV Elements and III-V Com- pounds. Berlin: Springer-Verlag. (App. B) REFERENCES
- Marsh, J. H., Houston, P. A., and Robson, P. N. (1981). In Gallium Arsenide and Related Compounds, edited by H. W. Thim. Bristol, Gloucestershire, England: Institute of Physics. (5)
- Matthews, J. W., and Blakeslee, A. E. (1974). Defects in epitaxial multilayers. I. Misfit dislocations. J. Cryst. Growth, 27, 118. (2)
- Maziar, C. M., Klausmeier-Brown, M. E., and Lundstrom, M. S. (1986a). A proposed structure for collector transit-time reduction in AlGaAs/GaAs bipolar transistors. IEEE Electron Devices Lett., EDL-7, 483-85. (4)
- Maziar, C. M., Klausmeier-Brown, M. E., Bandyopadhyay, S., Lundstrom, M. S., and Datta, S. (1986b). Monte Carlo evaluation of electron transport in heterojunction bipolar transistor base structures. IEEE Trans. Electron Devices, ED-33, 881-87. (4)
- Mazumder, P., Kulkarni, S., Bhattacharya, M., Sun, J. P., and Haddad, G. I. (1998). Digital circuit applications of resonant tunneling diodes. Proc. IEEE, 86, 664-86. (6)
- McDermott, B. T., Gertner, E. R., Pittman, S., Seabury, C. W., and Chang, M. F. (1996). Growth and doping GaAsSb via metalorganic chemical vapor deposition for InP heterojunction bipolar transistors. Appl. Phys. Lett., 68, 1386-88. (App. C)
- Meindl, J. D. (1984). Ultra-large scale integration. IEEE Trans. Electron De- vices, ED-31, 1555-61. (7)
- Meyer, M. (1997). NEC's HBT philosophy. Compound Semicond., May/June.
- Misawa, T. (1966a). Negative resistance in p-n junctions under avalanche breakdown conditions. Part I. IEEE Trans. Electron Devices, ED-13, 137- 43. (5)
- Misawa, T. (1966b). Negative resistance in p-n junctions under avalanche breakdown conditions. Part II. IEEE Trans. Electron Devices, ED-13, 143- 51. (5)
- Monemar, B., and Pozina, G. (2000). Group III-nitride based hetero and quan- tum structures. Prog. Quantum Electron., 24, 239-92. (App. C)
- Mori, T., Ohnishi, H., Imamura, K., Muto, S., and Yokoyama, N. (1986). Resonant tunneling hot-electron transistor with current gain of 5. Appl. Phys. Lett., 49, 1779-80. (6)
- Muraguchi, M. (1999). RF device trends for mobile communications. Solid- State Electron., 43, 1591-98. (1)
- Nakajima, H., Tomizawa, M., and Ishibashi, T. (1992). Monte Carlo analysis of the space-charge effect in AlGaAs/GaAs ballistic collection transistors (BCTs) under high current injection. IEEE Trans. Electron Devices, ED-39, 1558-63. (4)
- Nakazato, K., Blaikie, R. J., Cleaver, J. R. A., and Ahmed, H. (1993). Single- electron memory. Electron. Lett., 29, 384-85. (8)
- Nguyen, L. D., Larson, L., and Mishra, U. (1992a). Ultra-high-speed modula- tion-doped field-effect transistors: a tutorial review. Proc. IEEE, 80(4), 494- 518. (3)
- Nguyen, L. D., Brown, A. S., Thompson, M. A., and Jelloian, L. M. (1992b). 50 nm self-aligned gate pseudomorphic AlInAs/GaInAs high electron mo- bility transistors. IEEE Trans. Electron Devices, ED-39(9), 2007-14. (3)
- Nye, J. F. (1985). Physical Properties of Crystals: Their Representation by Tensors and Matrices. New York: Oxford University Press. (2)
- Pao, H. C., and Sah, C. T. (1966). Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors. Solid-State Electron., 9, 927-37. (7)
- Park, D. H., and Brennan, K. F. (1989). Theoretical analysis of an AlGaAs/ InGaAs pseudomorphic HEMT using an ensemble Monte Carlo simulation. IEEE Trans. Electron Devices, ED-36, 1254-63. (3)
- Park, D. H., and Brennan, K. F. (1990). Monte Carlo simulation of 0.35 ¹m gate-length GaAs and InGaAs HEMTs. IEEE Trans. Electron Devices, ED-37, 618-28. (3)
- Passlack, M., Abrokwah, J. K., and Lucero, R. (2000). Experimental observa- tion of velocity overshoot in n-channel AlGaAs/InGaAs/GaAs enhancement mode MODFETs. IEEE Electron Devices Lett., EDL-21, 518-20. (3)
- Paul, D. J. (1998). Silicon germanium heterostructures in electronics: the present and the future. Thin Solid Films, 321, 172-80. (4)
- Pavlides, D. (1999). Reliability characteristics of GaAs and InP-based hetero- junction bipolar transistors. Microelectron. Reliab., 39, 1801-8. (4)
- Pierret, R. F. (1996). Semiconductor Device Fundamentals. Reading, MA: Add- ison-Wesley. (4)
- Porod, W. (1997). Quantum-dot devices and quantum-dot cellular automata. J. Franklin Inst., 334B, 1147-75. (8)
- Potter, R. C., Lakhani, A. A., Beyea, D., Hier, H., Hempfling, E., and Fathi- mulla, A. (1988). Three-dimensional integration of resonant tunneling struc- tures for signal processing and three-state logic. Appl. Phys. Lett., 52, 2163- 64. (6)
- Preskill, J. (1998). Quantum computing: pro and con. Proc. R. Soc. London Ser. A, 454, 469-86. (8)
- Price, P. J. (1981). Two-dimensional electron transport in semiconductor lay- ers. I. Phonon scattering. Ann. Phys., 133, 217-39. (6)
- Quay, R., Hess, K., Reuter, R., Schlechtweg, M., Grave, T., Palankovski, V., and Selberherr, S. (2001). Nonlinear electronic transport and device perfor- mance of HEMTs. IEEE Trans. Electron Devices, ED-48, 210-17. (3)
- Raghavan, G., Sokolich, M., and Stanchina, W. E. (2000). Indium phosphides ICs unleash the high frequency spectrum. IEEE Spectrum, 37, 47-52. (4)
- Read, W. T., Jr., (1958). A proposed high-frequency negative-resistance diode. Bell Syst. Tech. J., 37, 401-46. (5)
- Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P., and Tour, J. M. (1997). Conductance of a molecular junction. Science, 278, 252-53. (8)
- Ridley, B. K. (1993). Quantum Processes in Semiconductors, 3rd ed., Oxford: Oxford University Press. (6)
- Ridley, B. K. (1997). Electrons and Phonons in Semiconductor Layers. Cam- bridge: Cambridge University Press. (6)
- Ridley, B. K., and Watkins, T. B. (1961). The possibility of negative resistance effects in semiconductors. Proc. Phys. Soc., 78, 293-304. (5)
- Ridley, B. K., Foutz, B. E., and Eastman, L. F. (2000). Mobility of electrons in bulk GaN and Al x Ga 1"x N/GaN heterostructures. Phys. Rev. B, 61, 16862- 69. (2)
- Rockett, P. I. (1988). Monte Carlo study of the influence of collector region velocity overshoot on the high-frequency performance of AlGaAs/GaAs heterojunction bipolar transistors. IEEE Trans. Electron Devices, ED-35, 1573-79. (4)
- Rosenberg, J. J., Benlami, M., Kirchner, P. D., Woodall, J. M., and Pettit, G. D. (1985). IEEE Electron Devices Lett., EDL-6, 491-93. (5)
- Rossi, F., and Jacoboni, C. (1989). A quantum description of drift velocity overshoot at high electric fields in semiconductors. Solid-State Electron., 32, 1411-15. (6)
- Roulston, D. J. (1990). Bipolar Semiconductor Devices. New York: McGraw- Hill. (4)
- Ruch, J. G. (1972). Electron dynamics in short channel field-effect transistors. IEEE Trans. Electron Devices, ED-19, 652-54. (3)
- Ruden, P. P. (1990). Heterostructure FET model including gate leakage. IEEE Trans. Electron Devices, ED-37, 2267-70. (3)
- See, P., Paul, D. J., Hollander, B., Mantl, S., Zozuolenko, I. V., and Berggren, K.-F. (2001). High dc performance Si/SiGe resonant tunnelling diodes. IEEE Electron Devices Lett., EDL-22, 182. (App. C)
- Selberherr, S. (1984). Analysis and Simulation of Semiconductor Devices. Vi- enna: Springer-Verlag. (7)
- Shen, J.-J., Brown, A. S., Metzger, R. A., Sievers, B., Bottomley, L., Eckert, P., and Carter, B. (1998). Modification of quantum dot properties via surface exchange and annealing: substrate temperature effects. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct., 16, 1326-29. (2)
- Shimony, A. (1985). The reality of the quantum world. Sci. Am., 46-53. (8)
- Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev., 41, 303-32. (8)
- Shur, M. (1990). Physics of Semiconductor Devices. Upper Saddle River, NJ: Prentice Hall. (4)
- Singh, J. (1993). Physics of Semiconductors and Their Heterostructures. New York: McGraw-Hill.
- Smith, D. L. (1986). Strain-generated electric fields in [111] growth axis strained-layer superlattices. Solid-State Commun., 57, 919-21. (2)
- Smith, A. W., and Brennan, K. F. (1998). Hydrodynamic simulation of semi- conductor devices. Prog. Quantum Electron., 21, 293-360. (3)
- Smorchkova, I. P., Elsass, C. R., Ibbetson, J. P., Vetury, R., Heying, B., Fini, P., Haus, E., DenBaars, S. P., Speck, J. S., and Mishra, U. K. (1999). Polarization-induced charge and electron mobility in AlGaN/GaN hetero- structures grown by plasma-assisted molecular-beam-epitaxy. J. Appl. Phys., 86, 4520-26. (2)
- Snow, E. S., Shanabrook, B. V., and Gammon, D. (1990). Strain-induced two-dimensional electron gas in [111] growth-axis strained-layer structures. Appl. Phys. Lett., 56, 758-60. (2)
- Snowden, C. M. (1988). Semiconductor Device Modelling. Exeter, Devonshire, England: Peter Pereginus. (3)
- Steane, A. (1998). Quantum computing. Rep. Prog. Phys., 61, 117-73.
- Stone, A. D., and Lee, P. A. (1985). Effect of inelastic processes on resonant tunneling in one dimension. Phys. Rev. Lett., 54, 1196-99. (6)
- Stone, N. J., Ahmed, H., and Nakazato, K. (1999). A high-speed silicon single- electron random access memory. IEEE Electron Devices Lett., EDL-20, 583- 85. (8)
- Stormer, H. L., and Tsui, D. C. (1983). The quantized Hall effect. Science, 220, 1241-46.
- Stormer, H. L., Yeh, A. S., Pan, W., Tsui, D. C., Pfeiffer, L. N., Baldwin, K. W., and West, K. W. (1998). Composite fermions at different levels. Physica E, 3, 38-46. (9)
- Streetman, B. G., and Banerjee, S. (2000). Solid State Electronic Devices, 5th ed., Upper Saddle River, NJ: Prentice Hall. (5)
- Streit, D. (2001). Private communication.
- Su, L. T., Jacobs, J. B., Chung, J. E., and Antoniadis, D. A. (1994). Deep- submicrometer channel design in silicon-on-insulator (SOI) MOSFETs. IEEE Electron Devices Lett., EDL-15, 366-69. (8)
- Sun, J. P., Haddad, G. I., Mazumder, P., and Schulman, J. N. (1998). Resonant tunneling diodes: models and properties. Proc. IEEE, 86, 641-60. (6)
- Sze, S. M. (1981). Physics of Semiconductor Devices, 2nd ed., New York: Wiley. (5)
- Sze, S. M. (1985). Semiconductor Devices Physics and Technology. New York: Wiley. (4)
- Tang, J. Y., and Hess, K. (1982). Investigation of transient and electronic transport in GaAs following high energy injection. IEEE Trans. Electron Devices, ED-29, 1906-10. (4)
- Tapuhi, E. (1991). Molecular electronics: a new interdisciplinary field of re- search. Interdiscip. Sci. Rev., 16, 45-60. (8) REFERENCES
- Taur, Y., and Ning, T. H. (1998). Fundamentals of Modern VLSI Devices. Cam- bridge: Cambridge University Press. (7)
- Taur, Y., Buchanan, D. A., Chen, W., Frank, D. J., Ismail, K. E., Lo, S.-H., Asi-Halasz, G. A., Viswanathan, R. G., Wann, H.-J. C., Wind, S. J., and Wong, H.-S. (1997). CMOS scaling into the nanometer regime. Proc. IEEE, 85, 486-503. (7)
- Teich, M. C., Matsuo, K., and Saleh, B. E. A. (1986). Excess noise factors for conventional and superlattice avalanche photodiodes and photomultiplier tubes. IEEE J. Quantum Electron., QE-22, 1184-93. (5)
- Thornber, K. K. (1991). Path integral method: use of Feynman path integrals in quantum transport theory, in Quantum Transport in Semiconductors, edited by D. K. Ferry and C. Jacoboni. New York: Plenum Press. (6)
- Tiwari, S. (1992). Compound Semiconductor Device Physics. San Diego, CA: Academic Press. (3)
- Tiwari, S., Rana, F., Hanafi, H., Harstein, A., Crabbe, E. F., and Chan, K. (1996). A silicon nanocrystals based memory. Appl. Phys. Lett., 68, 1377- 79.
- Tsao, J. Y. (1993) Materials Fundamentals of Molecular Beam Epitaxy. San Diego, CA: Academic Press. (2)
- Tsu, R., and Dohler, G. (1975). Hopping conduction in a "superlattice." Phys. Rev. B, 12, 680-86. (6)
- Tsu, R., and Esaki, L. (1973). Tunneling in a finite superlattice. Appl. Phys. Lett., 22, 562-64. (6)
- Tsui, D. C., and Gossard, A. C. (1981). Resistance standard using quantization of the Hall resistance of GaAs-Al x Ga 1"x As heterostructures. Appl. Phys. Lett., 38, 550-2.
- Tsui, D. C., Stormer, H. L., and Gossard, A. C. (1982). Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett., 48, 1559- 62. (9)
- Vaidyanathan M., and Pulfrey, D. L. (1999). Extrapolated f max of heterojunc- tion bipolar transistors. IEEE Trans. Electron Devices, ED-46, 301-9. (4)
- Veeraraghavan, S., and Fossum, J. G. (1989). Short-channel effects in SOI MOSFETs. IEEE Trans. Electron Devices, ED-36, 522-28. (7)
- Venables, J. A. (2000). Introduction to Thin Film Processes. Cambridge: Cam- bridge University Press. (2)
- Villasenor, J., and Mangione-Smith, W. H. (1997). Configurable computing. Sci. Am., 276, 66-71. (8)
- von Klitzing, K., Dorda, G., and Pepper, M. (1980). New method for high- accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett., 45, 494-97. (9)
- Weil, T., and Vinter, B. (1986). Calculation of phonon-assisted tunneling be- tween two quantum wells. J. Appl. Phys., 60, 3227-31. (6)
- Weisbuch, C., and Vinter, B. (1991). Quantum Semiconductor Structures. San Diego, CA: Academic Press. (9)
- Whitesides, G. M., Mathias, J. P., and Seto, C. T. (1991). Molecular self- assembly and nanochemistry: a chemical strategy for the synthesis of nanos- tructures. Science, 254, 1312-19. (8)
- Willett, R. L. (1997). Experimental evidence for composite fermions. Semi- cond. Sci. Technol., 12, 495-524. (9)
- Willett, R. L., Eisenstein, J. P., Stormer, H. L., Tsui, D. C., Gossard, A. C., and English, J. H. (1987). Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett., 59, Oct. 12.
- Williams, R. S. (2000). Private communication. (8)
- Windhorn, T. H., Cook, L. W., and Stillman, G. E. (1982). IEEE Electron Devices Lett., EDL-3, 18-20. (5)
- Wong, H.-S. P., Frank, D. J., Solomon, P. M., Wann, C. H. J., and Welser, J. J. (1999). Nanoscale CMOS. Proc. IEEE, 87, 537-70. (7)
- Woodward, T. K., McGill, T. C., and Burnham, R. D. (1987). Experimental realization of a resonant tunneling transistor. Appl. Phys. Lett., 23, 451-53. (6)
- Yamada, T., Zhou, J.-R., Miyata, H., and Ferry, D. K. (1994). In-plane trans- port properties of Si/Si 1"x Ge x structure and its FET performance by com- puter simulation. IEEE Trans. Electron Devices, ED-41, 1513-22. (8)
- Yano, K., Ishii, T., Hashimoto, T., Kobayashi, T., Murai, F., and Seki, K. (1994). Room-temperature single-electron memory. IEEE Trans. Electron Devices, ED-41, 1628-37. (8)
- Yau, L. D. (1974). A simple theory to predict the threshold voltage of short- channel IGFETs. Solid-State Electron., 17, 1059-63. (7)
- Yokoyama, K., and Hess, K. (1986). Monte Carlo study of electronic transport in Al 1"x Ga x As/GaAs single-well heterostructures. Phys. Rev. B, 33, 5595- 606. (2)
- Yokoyama, K., Tomizawa, M., and Yoshii, A. (1984). Accurate modeling of AlGaAs/GaAs heterostructure bipolar transistors by two-dimensional com- puter simulation. IEEE Trans. Electron Devices, ED-31, 1222-29. (4)
- Yoon, K. S., Stringfellow, G. B., and Huber, R. J. (1987). Monte Carlo calcu- lation of velocity-field characteristics in GaInAs/InP and GaInAs/AlInAs single-well heterostructures. J. Appl. Phys., 62, 1931-36. (6)
- Yu, T.-H., and Brennan, K. F. (2001). Theoretical study of the two-dimensional electron mobility in strained III-nitride heterostructures. J. Appl. Phys., 89, 3827-34. (2)
- Yu, E. T., McCaldin, J. O., and McGill, T. C. (1992). In Solid State Physics: Advances in Research and Applications. Vol. 46, edited by H. Ehrenreich and D. Turnbull. Boston: Academic Press, pp.1-146. (App. C)
- Yu, T.-H., Yu, E. T., Sullivan, G. J., Asbeck, P. M., Wang, C. D., Qiao, D., and Lau, S. S. (1997). Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors. Appl. Phys. Lett., 71, 2794-96. (2)