ONE-DIMENSIONAL QUANTUM WALKS WITH ONE DEFECT
2012, Reviews in Mathematical Physics
https://doi.org/10.1142/S0129055X1250002XAbstract
The CGMV method allows for the general discussion of localization properties for the states of a one-dimensional quantum walk, both in the case of the integers and in the case of the non negative integers. Using this method we classify, according to such localization properties, all the quantum walks with one defect at the origin, providing explicit expressions for the asymptotic return probabilities to the origin.
References (39)
- M. Aizenman and S. Molchanov, Localization at large disorder and at extreme energies: An elemantary derivation, Commun. Math. Phys. 157 (1993) 245-278.
- A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, J. Watrous, One-dimensional quantum walks, in Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, 2001, pp. 37-49.
- P. W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev. 109 (1958) 1492-1505.
- M. J. Cantero, L. Moral, L. Velázquez, Five-diagonal matrices and zeros of orthogonal poly- nomials on the unit circle, Linear Algebra Appl. 362 (2003) 29-56.
- M. J. Cantero, F. A. Grünbaum, L. Moral and L. Velázquez, Matrix valued Szegő polynomials and quantum random walks, Commun. Pure Applied Math. 58 (2010) 464-507.
- A. Clayton, Quasi-birth-and-death processes and matrix-valued orthogonal polynomials, SIAM J. Matrix Anal. Appl. 31 (5) (2010) 2239-2260.
- D. Damanik, R. Killip, B. Simon, Perturbations of orthogonal polynomials with periodic re- cursion coefficients, Ann. of Math. 171 (2010) 1931-2010.
- D. Damanik, A. Pushnitski, B. Simon, The analytic theory of matrix orthogonal polynomials, Surveys in Approximation Theory 4 (2008) 1-85.
- H. Dette, B. Reuther, W. Studden, M. Zygmunt, Matrix measures and random walks with a block tridiagonal transition matrix, SIAM J. Matrix Anal. Appl. 29 (1) (2006) 117-142.
- K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, John Wiley & Sons, Chichester, New York, 1990.
- L. Golinskii, Absolutely continuous measures on the unit circle with sparse Verblunsky coeffi- cients, Mat. Fiz. Anal. Geom. 11 (4) (2004) 408-420.
- F. A. Grünbaum, Random walks and orthogonal polynomials: some challenges, in Probability, Geometry and Integrable systems, Mark Pinsky and Bjorn Birnir editors, MSRI publication vol. 55, 2007, pp. 241-260, see also arXiv math PR/0703375.
- F. A. Grünbaum, QBD processes and matrix valued orthogonal polynomials: some new explicit examples, Dagstuhl Seminar Proceedings 07461, Numerical Methods in structured Markov Chains, 2007, D. Bini editor.
- F. A. Grünbaum, Block tridiagonal matrices and a beefed-up version of the Ehrenfest urn model, iin Operator Theory: Advances and Applications, vol. 190, 2009, pp. 267-277.
- F. A. Grünbaum, The Karlin-McGregor formula for a variant of a discrete version of Walsh's spider, J. Phys. A: Math. Theor. 42 (2009) 454010.
- F. A. Grünbaum, A spectral weight matrix for a discrete version of Walsh's spider, in Operator Theory: Advances and Applications, vol. 202, 2010, pp. 253-264.
- F. A. Grünbaum, M. D. de la Iglesia, Matrix valued orthogonal polynomials arising from group representation theory and a family of quasi-birth-and-death processes, Siam J. Matrix Anal. Appl. 30 (2) (2008) 741-763.
- E. Hamza, A. Joye, G. Stolz, Dynamical Localization for unitary Anderson models, Math. Phys. Anal. Geom. 12 (2009) 381-444.
- N. Inui, N. Konno, Localization of multi-state quantum walk in one dimension, Phys. A 353 (2005) 133-144.
- N. Inui, N. Konno, E. Segawa, One-dimensional three-state quantum walk, Phys. Rev. E 72 (2005) 056112.
- N. Inui, Y. Konishi, N. Konno, Localization of two-dimensional quantum walks, Phys. Rev. A 69 (2004) 052323.
- A. Joye, M. Merkli, Dynamical Localization of Quantum Walks in Random Environments, J. Stat. Phys. 140 (6) (2010) 1-29.
- S. Karlin, J. McGregor, Random walks, Illinois J. Math. 3 (1959) 66-81.
- O. Knill, A remark on quantum dynamics, Helv. Phys. Acta 71 (1998) 233-241.
- N. Konno, One-dimensional discrete-time quantum walks on random environments, Quantum Inf. Proc. 8 (2009) 387-399.
- N. Konno, Localization of an inhomogeneous discrete-time quantum walk on the line, Quantum Information Processing 9 (2010) 405-418.
- N. Konno, E. Segawa, Localization of discrete time quantum walks on a half line via the CGMV method, arXiv 1008.5109v1 [quant-ph] 30 Aug 2010.
- M. G. Krein, Infinite J-matrices and a matrix moment problem, Dokl. Akad. Nauk SSSR 69 (2) (1949) 125-128.
- M. G. Krein, Fundamental aspects of the representation theory of hermitian operators with deficiency index (m, m), AMS Translations, Series 2, vol. 97, Providence, Rhode Island (1971), pp. 75-143.
- Y. Last, Quantum dynamics and decompositions of singular continuous spectra, J. Funct. Analysis 142 (1996) 406-445.
- G. Plya, Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz, Mathematische Annalen 84 (1921) 149-160.
- F. Riesz, ber die Randwerte einer analytischen Funktion, Math. Z. 18 (1923) 87-95.
- B. Simon, Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, AMS Colloq. Publ., vol. 54.1, AMS, Providence, RI, 2005.
- B. Simon, Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory, AMS Colloq. Publ., vol. 54.2, AMS, Providence, RI, 2005.
- M. Štefaňk, I. Jex, T. Kiss, Recurrence and Plya number of quantum walks, Phys. Rev. Lett. 100 (2008) 020501.
- M. Štefaňk, T. Kiss, I. Jex, Recurrence properties of unbiased coined quantum walks on infinite d-dimensional lattices, Phys. Rev. A 78 (2008) 032306.
- M. Štefaňk, T. Kiss, I. Jex, Recurrence of biased quantum walks on a line, New. J. Phys. 11 (2009) 043027.
- K. Watabe, N. Kobayashi, M. Katori, N. Konno, Limit distributions of two-dimensional quan- tum walks, Phys. Rev. A 77 (2008) 062331.
- F. A. Grünbaum) Department of Mathematics, University of California, Berke- ley, CA, 94720 E-mail address, F. A. Grünbaum: grunbaum@math.berkeley.edu (M. J. Cantero, L. Moral, L. Velázquez) Departamento de Matemtica Aplicada, Uni- versidad de Zaragoza, Zaragoza, Spain E-mail address, M. J. Cantero: mjcante@unizar.es E-mail address, L. Moral: lmoral@unizar.es E-mail address, L. Velázquez: velazque@unizar.es