Academia.eduAcademia.edu

Outline

One Dimensional Quantum Walks with Memory

2009, arXiv: Quantum Physics

Abstract

We investigate the quantum versions of a one-dimensional random walk, whose corresponding Markov Chain is of order 2. This corresponds to the walk having a memory of up to two previous steps. We derive the amplitudes and probabilities for these walks, and point out how they differ from both classical random walks, and quantum walks without memory.

References (16)

  1. Andris Ambainis. Quantum walks and their algorithmic applications. In- ternational Journal of Quantum Information, 1:507-518, 2003.
  2. Andris Ambainis, Eric Bach, Ashwin Nayak, Ashvin Vishwanath, and John Watrous. One dimensional quantum walks. In Proceedings of STOC'01, pages 37-49, 2001.
  3. Todd A. Brun, Hilary A. Carteret, and Andris Ambainis. Quantum walks driven by many coins. Phys. Rev. A, 67(052317), 2003.
  4. A. P. Flitney, D. Abbott, and N. F. Johnson. Quantum random walks with history dependence. J. Phys. A: Math. Gen., 37:7581-7591, 2004.
  5. N. Inui and N. Konno. Localization of multi-state quantum walk in one dimension. Physica A, 353:133-144, 2005.
  6. N. Inui, N. Konno, and E. Segawa. One-dimensional three-state quantum walk. Physical Review E, 72(056112), 2005.
  7. R. J. Jenks and R. S. Sutor. Axiom -The Scientific Computation System. Springer Verlag New York, 1992. ISBN 0-387-97855-0.
  8. Julia Kempe. Quantum random walks -an introductory overview. Con- temporary Physics, 44(4):307-327, 2003.
  9. Viv Kendon. Decoherence in quantum walks -a review. Math. Struct. in Comp. Sci, 17(6):1169-1220, 2006.
  10. N. Konno. Quantum walks. In:Quantum Potential Theory, Franz, U., and Schürmann, M., Eds., volume 1954 of Lecture Notes in Mathematics, pages 309-452. Springer-Verlag, Heidelberg, 2008.
  11. N. Konno. Localization of an inhomogeneous discrete-time quantum walk on the line. Quantum Information Processing, In Press.
  12. Donatella Merlini, Francesca Uncini, and M. Cecilia Verri. A unified ap- proach to the study of general and palindromic compositions. INTEGERS: Electronic Journal of Combinatorial Number Theory, 4(A23), 2004.
  13. David A. Meyer. From quantum cellular automata to quantum lattice gases. J. Stat. Phys, 85:551-574, 1996.
  14. Ashwin Nayak and Ashvin Vishwanath. Quantum walk on the line. quant- ph/0010117, 2000.
  15. J. B. Stang, A. T. Rezakhani, and B. C. Sanders. Correlation effects in a discrete quantum random walk. J. Phys. A: Math. Theor., 42(175304), 2009.
  16. S. E. Venegas-Andraca. Quantum Walks for Computer Scientists. Morgan and Claypool, 2008.