Academia.eduAcademia.edu

Outline

An analytic solution for one-dimensional quantum walks

2007, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.0705.0077

Abstract

The first general analytic solutions for the one-dimensional walk in position and momentum space are derived. These solutions reveal, among other things, new symmetry features of quantum walk probability densities and further insight into the behaviour of their moments. The analytic expressions for the quantum walk probability distributions provide a means of modelling quantum phenomena that is analogous to that provided by random walks in the classical domain.

References (16)

  1. A. Nayak and A. Vishwanath 2000 Quantum Walk on the Line, quant- ph/0010117
  2. N. Konno, 2002, "A new type of limit theorems for the one-dimensional quantum random walk",quant-ph/0206103
  3. T. A. Brun, H. A. Carteret, and A. Ambainis, 2002, "Quantum walks driven by many coins" Phys. Rev. A 67 , quant-ph/0210161
  4. J. Kempe, 2003 "Quantum walks-an introductory overview", Contemporary Physics 44 307-327, quant-ph/0303082
  5. F. Strauch, 2007 "Connecting the discrete and continuous time quantum walks",quant-ph/0606050
  6. J. R. Busemeyer and J. T. Townsend 2004 "Quantum dynamics of human decision making" Jnl. of Math. Psych.
  7. M. Lee, I. Fuss and D. Navarro 2006 "A Bayesian Approach to Diffusion Models of Decision-Making and Response Time" NIPS
  8. L. K. Grover 1997 Phys. Rev. Let. 79 325
  9. S. Naguleswaran, I. Fuss, and L. White 2006, "Automated planning using quantum computation", Proc. of ICAPS 06
  10. Y. Aharanov, L. Davidovich, and N. Zagury, 1992 "Quantum Random walks", Phys. Rev. A 48 1687-1690
  11. D. A. Meyer, 1996, "From quantum cellular automata to lattice gases", J. Stat. Phys. 85 551, quant-ph/9604003
  12. See procedures from solid state physics e. g. J. Ziman 1972 Principles of the Theory of Solids Cambridge
  13. M. A. Neilsen and I. L. Chuang 2000 Quantum Computation and Quantum Information Cambridge
  14. E. Merzbacher 1998 Quantum Mechanics Wiley 3 rd Edition
  15. G. B. Arfken and H. J. Weber 2005 Mathematical Methods for Physicists Elsevier 5 th Edition
  16. G. Cassella and R Berger 1990 Statistical Inference Wadsworth and Brooks/Cole