Academia.eduAcademia.edu

Outline

One-dimensional lazy quantum walks and occupancy rate

2015, Chinese Physics B

https://doi.org/10.1088/1674-1056/24/5/050305

Abstract

Lazy quantum walks were presented by Andrew M. Childs to prove that the continuous-time quantum walk is a limit of the discrete-time quantum walk [Commun.Math.Phys.294,581-603(2010)]. In this paper, we discuss properties of lazy quantum walks. Our analysis shows that lazy quantum walks have O(t n) order of the n-th moment of the corresponding probability distribution, which is the same as that for normal quantum walks. Also, the lazy quantum walk with DFT (Discrete Fourier Transform) coin operator has a similar probability distribution concentrated interval to that of the normal Hadamard quantum walk. Most importantly, we introduce the concepts of occupancy number and occupancy rate to measure the extent to which the walk has a (relatively) high probability at every position in its range. We conclude that lazy quantum walks have a higher occupancy rate than other walks such as normal quantum walks, classical walks and lazy classical walks.

References (33)

  1. Venegas-Andraca, S E 2012 Quant. Inf. Proc. 11 5, pp 1015-1106
  2. Reitzner D, Nagaj D, and Buzek V 2013 arXiv: quant-ph/1207.7283v2
  3. Ambainis A 2003 arXiv: quant-ph/0311001
  4. Shenvi N, Kempe J, and BirgittaWhaley K 2003 Phys. Rev. A 67 052307
  5. Hein B, and Tanner G 2010 Phys. Rev. A 82 012326
  6. Berry S D, and Wang J B 2010 Phys. Rev. A 82 042333
  7. Tarrataca L, and Wichert A 2013 Quant. Inf. Proc. 12 2, pp 1365-1378
  8. Li D, Zhang J, Guo F Z, Huang W, Wen Q Y, and Chen H 2013 Quant. Inf. Proc. 12 3, pp 1501-1513
  9. Li D, Zhang J, Ma X W, Zhang W W, and Wen Q Y 2013 Quant. Inf. Proc. 12 6, pp 2167-2176
  10. Berry S D, and Wang J B 2011 Phys. Rev. A 83 042317
  11. Douglas B L, and Wang J B 2008 J. Phys. A 41 075303
  12. Ambainis A, Bach E, Nayak A, Vishwanath A, and Watrous J 2011 STOC '01 Proceedings of the thirty-third annual ACM symposium on Theory of computing (ACM New York, NY, USA) pp. 37-49
  13. Nayak A, and Vishwanath A 2000 arXiv: quant-ph/0010117
  14. Chou C I, and Ho C L 2014 Chin. Phys. B 23 110302
  15. Li M, Zhang Y S, and Guo G C 2013 Chin. Phys. B 22 030310
  16. Xue P, and Sanders B C 2012 Phys. Rev. A 85 022307
  17. DiFranco C, McGettrick M, and Busch T 2011 Phys. Rev. L 106 080502
  18. DiFranco C, McGettrick M, Machida T, and Busch T 2011 Phys. Rev. A 84 042337
  19. Inui N, Konno N, and Segawa E 2005 arXiv: quant-ph/0507207v1
  20. Rohde P P, Schreiber A, Stefanak M, Jex I, and Silberhorn C 2011 New J. Phys. 13 013001
  21. Mayer K, Tichy M C, Mintert F, Konrad T, and Buchleitner A 2011 Phys. Rev. A 83 062307
  22. Zhang R, Qin H, Tang B, and Xue P 2013 Chin. Phys. B 22 110312
  23. Zhang R, Xu Y Q, and Xue P 2015 Chin. Phys. B 24 010303
  24. Childs A M 2010 Commun. Math. Phys. 294 581-603
  25. Stefanak M, Bezdekova I, and Jex I 2014 arXiv: 1405.7146v2
  26. Falkner S, and Boettcher S 2014 arXiv: 1404.1330v2
  27. Stefanak M, Bezdekova I, and Jex I 2012 Eur. Phys. J. D 66 142
  28. Stefanak M, Bezdekova I, Jex I, and Barnett S M 2014 arXiv 1309.7835v2
  29. Machida T 2014 arXiv 1404.1522v1
  30. Carneiro I, Loo M, Xu X, Girerd M, Kendon V, Knight P L 2005 New J. Phys. 7 pp 156
  31. Tregenna B, Flanagan W, Maile R, and Kendon V 2003 New J. Phys. 5 83
  32. Maloyer O, Kendon V 2007 New J. Phys. 9 87
  33. Annabestani M, Abolhasani M R, Abal G 2010 J. Phys. A 43 075301