One-dimensional lazy quantum walks and occupancy rate
2015, Chinese Physics B
https://doi.org/10.1088/1674-1056/24/5/050305Abstract
Lazy quantum walks were presented by Andrew M. Childs to prove that the continuous-time quantum walk is a limit of the discrete-time quantum walk [Commun.Math.Phys.294,581-603(2010)]. In this paper, we discuss properties of lazy quantum walks. Our analysis shows that lazy quantum walks have O(t n) order of the n-th moment of the corresponding probability distribution, which is the same as that for normal quantum walks. Also, the lazy quantum walk with DFT (Discrete Fourier Transform) coin operator has a similar probability distribution concentrated interval to that of the normal Hadamard quantum walk. Most importantly, we introduce the concepts of occupancy number and occupancy rate to measure the extent to which the walk has a (relatively) high probability at every position in its range. We conclude that lazy quantum walks have a higher occupancy rate than other walks such as normal quantum walks, classical walks and lazy classical walks.
References (33)
- Venegas-Andraca, S E 2012 Quant. Inf. Proc. 11 5, pp 1015-1106
- Reitzner D, Nagaj D, and Buzek V 2013 arXiv: quant-ph/1207.7283v2
- Ambainis A 2003 arXiv: quant-ph/0311001
- Shenvi N, Kempe J, and BirgittaWhaley K 2003 Phys. Rev. A 67 052307
- Hein B, and Tanner G 2010 Phys. Rev. A 82 012326
- Berry S D, and Wang J B 2010 Phys. Rev. A 82 042333
- Tarrataca L, and Wichert A 2013 Quant. Inf. Proc. 12 2, pp 1365-1378
- Li D, Zhang J, Guo F Z, Huang W, Wen Q Y, and Chen H 2013 Quant. Inf. Proc. 12 3, pp 1501-1513
- Li D, Zhang J, Ma X W, Zhang W W, and Wen Q Y 2013 Quant. Inf. Proc. 12 6, pp 2167-2176
- Berry S D, and Wang J B 2011 Phys. Rev. A 83 042317
- Douglas B L, and Wang J B 2008 J. Phys. A 41 075303
- Ambainis A, Bach E, Nayak A, Vishwanath A, and Watrous J 2011 STOC '01 Proceedings of the thirty-third annual ACM symposium on Theory of computing (ACM New York, NY, USA) pp. 37-49
- Nayak A, and Vishwanath A 2000 arXiv: quant-ph/0010117
- Chou C I, and Ho C L 2014 Chin. Phys. B 23 110302
- Li M, Zhang Y S, and Guo G C 2013 Chin. Phys. B 22 030310
- Xue P, and Sanders B C 2012 Phys. Rev. A 85 022307
- DiFranco C, McGettrick M, and Busch T 2011 Phys. Rev. L 106 080502
- DiFranco C, McGettrick M, Machida T, and Busch T 2011 Phys. Rev. A 84 042337
- Inui N, Konno N, and Segawa E 2005 arXiv: quant-ph/0507207v1
- Rohde P P, Schreiber A, Stefanak M, Jex I, and Silberhorn C 2011 New J. Phys. 13 013001
- Mayer K, Tichy M C, Mintert F, Konrad T, and Buchleitner A 2011 Phys. Rev. A 83 062307
- Zhang R, Qin H, Tang B, and Xue P 2013 Chin. Phys. B 22 110312
- Zhang R, Xu Y Q, and Xue P 2015 Chin. Phys. B 24 010303
- Childs A M 2010 Commun. Math. Phys. 294 581-603
- Stefanak M, Bezdekova I, and Jex I 2014 arXiv: 1405.7146v2
- Falkner S, and Boettcher S 2014 arXiv: 1404.1330v2
- Stefanak M, Bezdekova I, and Jex I 2012 Eur. Phys. J. D 66 142
- Stefanak M, Bezdekova I, Jex I, and Barnett S M 2014 arXiv 1309.7835v2
- Machida T 2014 arXiv 1404.1522v1
- Carneiro I, Loo M, Xu X, Girerd M, Kendon V, Knight P L 2005 New J. Phys. 7 pp 156
- Tregenna B, Flanagan W, Maile R, and Kendon V 2003 New J. Phys. 5 83
- Maloyer O, Kendon V 2007 New J. Phys. 9 87
- Annabestani M, Abolhasani M R, Abal G 2010 J. Phys. A 43 075301