Abstract
Quantum computers are unnecessary for exponentially-efficient computation or simulation if the Extended Church-Turing thesis-a foundational tenet of computer science-is correct. The thesis would be directly contradicted by a physical device that efficiently performs a task believed to be intractable for classical computers. Such a task is BosonSampling: obtaining a distribution of n bosons scattered by some linear-optical unitary process. Here we test the central premise of BosonSampling, experimentally verifying that the amplitudes of 3-photon scattering processes are given by the permanents of submatrices generated from a unitary describing a 6-mode integrated optical circuit. We find the protocol to be robust, working even with the unavoidable effects of photon loss, non-ideal sources, and imperfect detection. Strong evidence against the Extended-Church-Turing thesis will come from scaling to large numbers of photons, which is a much simpler task than building a universal quantum computer.
FAQs
AI
What experimental results support the validity of the BosonSampling protocol?
The study verifies that the amplitudes of n=3 photon scatterings correspond to the permanents of n×n sub-matrices of U. Additionally, it finds robust performance under real-world conditions like photon loss and non-ideal sources.
How does BosonSampling challenge the Extended Church-Turing thesis?
It provides evidence against the thesis by demonstrating that quantum sampling can outperform classical computation as n increases, suggesting no known classical verification method is efficient. If Bob's quantum device samples much faster than Alice's classical computations for larger n, it further undermines the shared computational assumptions.
What experimental setup is used for BosonSampling in this study?
The BosonSampling circuit employs a 6×6 optical network with integrated 3×3 and 2×2 beam-splitters, allowing input of n photons via spontaneous parametric downconversion. It incorporates a measurement framework analyzing congruences in output distributions generated from both coherent and downconverted states.
What does the comparison between Alice's and Bob's results reveal?
The comparisons show increasing discrepancies: for n=2, L1=0.548 indicating a significant difference, while for n=3, L1=0.122 suggests enhanced non-classicality justifying quantum advantage. These results highlight that standard classical predictions diverge markedly from quantum distributions.
How do higher-order photon emissions affect BosonSampling outcomes?
Increasing downconversion pump power amplifies higher-order emissions, altering efficiency and affecting discrimination between quantum and classical states. This necessitates managing source brightness, as higher rates lead to increased systematic differences in resultant distributions compared to ideal Fock input predictions.
References (32)
- P. Shor, Proc. 35th Ann. Symp. Found. Comp. Sci. (IEEE Comp. Soc. Press) (1994).
- S. J. Aaronson, Ph.D. thesis, University of California, Berkeley (2004).
- P. C. W. Davies, Fluct. Noise Lett. 7, C37 (2007).
- S. Aaronson and A. Arkhipov, Proc. ACM Symposium on Theory of Computing, San Jose, CA pp. 333-342 (2011).
- S. Aaronson, Proceedings of the Royal Society A: Math- ematical, Physical and Engineering Science 467, 3393 (2011).
- L. Valiant, Theoretical Computer Science 8, 189 (1979).
- M. J. Bremner, R. Jozsa, and D. J. Shepherd, Proceed- ings of the Royal Society A: Mathematical, Physical and Engineering Science 467, 459 (2011).
- S. Rahimi-Keshari, M. A. Broome, R. Fickler, A. Fedrizzi, T. C. Ralph, and A. G. White, To be sub- mitted. Manuscript enclosed in this submission. (2012).
- J. L. O'Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, Phys. Rev. Lett. 93, 080502 (2004).
- A. Laing and J. L. O'Brien, arXiv:1208.2868 (2012).
- S. Scheel, arXiv:quant-ph/0406127v1 (2004).
- C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
- H. Paul, P. Törmä, T. Kiss, and I. Jex, Phys. Rev. Lett. 76, 2464 (1996).
- P. Kok and S. L. Braunstein, Phys. Rev. A 63, 033812 (2001).
- X. Yao, T. Wang, P. Xu, H. Lu, G. Pan, X. Bao, C. Peng, C. Lu, Y. Chen, and J. Pan, Nature Photonics 6, 225 (2012).
- A. Lita, A. Miller, and S. Nam, Optics Express 16, 3032 (2008).
- D. Smith, G. Gillett, M. de Almeida, C. Branciard, A. Fedrizzi, T. Weinhold, A. Lita, B. Calkins, T. Gerrits, S. Nam, et al., Nature Communications 3, 625 (2012).
- J. O. Owens, M. A. Broome, D. N. Biggerstaff, M. E. Goggin, A. Fedrizzi, T. Linjordet, M. Ams, G. D. Mar- shall, J. Twamley, M. J. Withford, et al., New Journal of Physics 13, 075003 (2011).
- A. Peruzzo, M. Lobino, J. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, et al., Science 329, 1500 (2010).
- P. Shadbolt, M. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. Matthews, M. Thompson, and J. O'Brien, Nature Photonics 6, 45 (2012).
- B. Metcalf, N. Thomas-Peter, J. Spring, D. Kundys, M. Broome, P. Humphreys, X. Jin, M. Barbieri, W. Kolthammer, J. Gates, et al., arXiv:1208.4575 (2012).
- A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senel- lart, Nature 466, 217 (2010).
- H.-K. Lau and D. F. V. James, Phys. Rev. A 85, 062329 (2012).
- A. Datta, A. Shaji, and C. M. Caves, Phys. Rev. Lett. 100, 050502 (2008).
- B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, Phys. Rev. Lett. 101, 200501 (2008).
- S. Jordan, Quantum Information & Computation 10, 470 (2010).
- P. Shor and S. Jordan, Quantum Information & Compu- tation 8, 681 (2008).
- S. Boixo and R. D. Somma, Phys. Rev. A 77, 052320 (2008).
- P. P. Rohde and T. C. Ralph, Phys. Rev. A 85, 022332 (2012).
- L. Mandel, Phys. Rev. A 28, 929 (1983), URL http: //link.aps.org/doi/10.1103/PhysRevA.28.929.
- M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White, Opt. Express 19, 22698 (2011), URL http://www.opticsexpress.org/abstract.cfm? URI=oe-19-23-22698.
- X. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, Physical Review A 83, 043814 (2011).