Academia.eduAcademia.edu

Outline

General Rules for Bosonic Bunching in Multimode Interferometers

2013, Physical Review Letters

https://doi.org/10.1103/PHYSREVLETT.111.130503

Abstract

We perform a comprehensive set of experiments that characterize bosonic bunching of up to 3 photons in interferometers of up to 16 modes. Our experiments verify two rules that govern bosonic bunching. The first rule, obtained recently in [1, 2], predicts the average behavior of the bunching probability and is known as the bosonic birthday paradox. The second rule is new, and establishes a n!-factor quantum enhancement for the probability that all n bosons bunch in a single output mode, with respect to the case of distinguishable bosons. Besides its fundamental importance in phenomena such as Bose-Einstein condensation, bosonic bunching can be exploited in applications such as linear optical quantum computing and quantum-enhanced metrology.

References (37)

  1. S. Aaronson and A. Arkhipov, in Proceedings of the 43rd annual ACM symposium on Theory of computing, San Jose, 2011 (ACM press, New York, 2011), pp. 333-342 (2011).
  2. A. Arkhipov and G. Kuperberg, Geometry & Topology Monographs, 18, 1 (2012).
  3. J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, Nature (London), 468, 545 (2010).
  4. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science, 269, 198 (1995).
  5. K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett., 75, 3969 (1995).
  6. C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett., 59, 2044 (1987).
  7. Z. Y. Ou, Phys. Rev. A, 74, 063808 (2006).
  8. B. Liu and Z. Y. Ou, Phys. Rev. A, 81, 023823 (2010).
  9. A. Peruzzo, A. Laing, A. Politi, T. Rudolph, and J. L.
  10. O'Brien, Nat. Commun., 2, 224 (2011).
  11. N. Spagnolo, C. Vitelli, L. Aparo, P. Mataloni, F. Scia- rrino, A. Crespi, R. Ramponi, and R. Osellame, Nat. Commun., 4, 1606 (2013).
  12. A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mat- aloni, and F. Sciarrino, Nat. Photon.,7, 545 (2013).
  13. M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, Science, 339, 794 (2013).
  14. J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. D. N. Thomas- Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Science, 339, 798 (2013).
  15. M. Tillmann, B. Dakic, R. Heilmann, S. Nolte, A. Sza- meit, and P. Walther, Nat. Photon., advance online pub- lication, doi:10.1038/nphoton.2013.102 (2013).
  16. Z. Y. Ou, J.-K. Rhee, and L. J. Wang, Phys. Rev. Lett. 83, 959 (1999).
  17. X.-L. Niu, Y.-X. Gong, B.-H. Liu, Y.-F. Huang, G.-C. Guo, and Z. Y. Ou, Optics Letters 34, 1297 (2009).
  18. M. C. Tichy, M. Tiersch, F. de Melo, F. Mintert, and A. Buchleitner, Phys. Rev. Lett. 104, 220405 (2010).
  19. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, Rev. Mod. Phys., 84, 777 (2012).
  20. V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon., 5, 222 (2011).
  21. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Rev. Mod. Phys., 79, 135 (2007).
  22. K. Zyczkowski and M. Kus, J. Phys. A: Math. Gen., 27, 4235 (1994).
  23. S. Scheel, preprint arXiv:quant-ph/0406127v1 (2004).
  24. L. G. Valiant, Theoretical Comput. Sci. 8, 189-201 (1979).
  25. R. Gattass and E. Mazur, Nature Photonics, 2, 219 (2008).
  26. G. Della Valle, R. Osellame, and P. Laporta, Journal of Optics A: Pure and Applied Optics, 11, 013001 (2009).
  27. K. Tsujino, H. F. Hofmann, S. Takeuchi, and K. Sasaki, Phys. Rev. Lett., 92, 153602 (2004).
  28. J. C. F. Matthews, K. Poulios, J. D. A. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Wörhoff, M. G. Thompson, and J. L. O'Brien, preprint arXiv:1106.1166 (2011).
  29. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, Phys. Rev. Lett., 108, 010502 (2012).
  30. A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, Nat. Photon., 7, 322 (2013).
  31. S. Aaronson and T. Hance, Electronic Colloquium on Computational Complexity, 19, 170 (2012).
  32. B. Lücke, M. Scherer, J. Kruse, L. Pezzè, F. Deuret- zbacher, P. Hyllus, O. Topic, J. Peise, W. Ertmer, J. Arlt, L. Santos, A. Smerzi, and C. Klempt, Science, 334, 773 (2011).
  33. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, Phys. Rev. Lett., 105, 200503 (2010).
  34. N. Spagnolo, C. Vitelli, L. Aparo, P. Mataloni, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, Nat. Commun., 4, 1606 (2013).
  35. A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, Nature Photonics, 7, 545 (2013).
  36. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, Phys. Rev. Lett., 108, 010502 (2012).
  37. A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, Nat. Photon., 7, 322 (2013).