Boson-sampling with non-interacting fermions
2015, International Journal of Quantum Information
https://doi.org/10.1142/S0219749915500136Abstract
We explore the conditions under which identical particles in unitary linear networks behave as the other species, i.e. bosons as fermions and fermions as bosons. It is found that the Boson-sampling (BS) computer of Aaronson and Arkhipov can be implemented in an interference experiment with non-interacting fermions in an appropriately entangled state. Moreover, a scheme is proposed which simulates the scattershot version of the BS computer by preparing, on the fly, the required entangled state of fermions from an unentangled one.
References (51)
- S. Aaronson and A. Arkhipov, arXiv:1011.3245 [quant-ph]; Theory of Computing 9, 143 (2013).
- E. Knill, R. Laflamme, and G. J. Milburn, Nature 409 (2001) 46.
- S. D. Barlett and B. C. Sanders, J. Mod. Opt. 50, 2331 (2003).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, (Cam- bridge University Press, Cambridge, 2000).
- L. G. Valiant, Theoretical Coput. Sci., 8, 189 (1979).
- E. R. Caianiello, Nuovo Cimento, 10, 1634 (1953); Combinatorics and Renormalization in Quantum Field Theory, Frontiers in Physics, Lecture Note Series (W. A. Benjamin, Reading, MA, 1973).
- S. Aaronson, Proc. Roy. Soc. London A, 467, 3393 (2008).
- C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
- Y. L. Lim and A. Beige, New J. Phys., 7, 155 (2005).
- M. A. Broome et al, Science 339, 794 (2013).
- J. B. Spring et al, Science, 339, 798 (2013).
- M. Tillmann et al, Nature Photonics, 7, 540 (2013).
- A. Crespi et al, Nature Photonics, 7, 545 (2013).
- N. Spagnolo et al, Phys. Rev. Lett. 111, 130503 (2013).
- P. P. Rohde, K. R. Motes, P. Knott, and W. J. Munro, arXiv:1401.2199 [quant-ph].
- V. S. Shchesnovich, arXiv:1403.4459 [quant-ph].
- P. P. Rohde and T. C. Ralph, Phys. Rev. A 85, 022332 (2012).
- P. P. Rohde, Phys. Rev. A 86, 052321 (2012).
- A. Leverrier and R. García-Patrón, arXiv:1309.4687 [quant-ph].
- V. S. Shchesnovich, Phys. Rev. A 89, 022333 (2014).
- C. Shen, Z. Zhang, and L.-M. Duan, Phys. Rev. Lett. 112, 050504 (2014).
- A. P. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph, J. L. O'Brien, and T. C. Ralph, Phys. Rev. Lett. 113, 100502 (2014).
- K. R. Motes, A. Gilchrist, J. P. Dowling, and P. P. Rohde, Phys. Rev. Lett. 113, 120501 (2014).
- C. Gogolin, M. Kliesch, L. Aolita, and J. Eisert, arXiv:1306.3995 [quant-ph].
- S. Aaronson and A. Arkhipov, arXiv:1309.7460 [quant-ph].
- N. Spagnolo et al, Nat. Photon. 8, 615 (2014).
- J. Carolan et al, Nat. Photon. 8, 621 (2014).
- M. C. Tichy, K. Mayer, A. Buchleitner, and K. Molmer, Phys. Rev. Lett. 113, 020502 (2014).
- V. S. Shchesnovich, arXiv:1410.1506 [quant-ph].
- L. G. Valiant, SIAM J. Comput. 31, 1229 (2002).
- E. Knill, arXiv:quant-ph/0108033.
- B. M. Terhal and D. P. DiVincenzo, Phys. Rev. A 65, 032325 (2002).
- S. Bravyi, Quantum Inform. Comput. 5, 216 (2005).
- D. P. DiVincenzo and B. M. Terhal, Found. Phys. 35, 1967 (2005).
- C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, and M. Kindermann, Phys. Rev. Lett. 93, 020501 (2004).
- H. Minc, Permanents, Encyclopedia of Mathematics and Its Applications, Vol. 6 (Addison- Wesley Publ. Co., Reading, Mass., 1978).
- A. Arkhipov and G.Kuperberg, Geom. Topol. Monogr., 18, 1 (2012).
- J.-D. Urbina, J. Kuipers, Q. Hummel, and K. Richter, arXiv:1409.1558 [quant-ph].
- A. Messiah, Quantum Mechanics, Vol. II (North Holland Publishing Company, 1965).
- C. K. Law, Phys. Rev. A 71, 034306 (2005).
- C. Chudzicki, O. Oke, and W. K. Wootters, Phys. Rev. Lett. 104, 070402 (2010).
- M. C. Tichy, P. A. Bouvrie, and K. Mølmer, Phys. Rev. A 86, 042317 (2012).
- J. C. F. Matthews et al, Sci. Rep. 3, 1539 (2013).
- M. C. Tichy, F. Mintert, and A. Buchleitner, Phys. Rev. A 87, 022319 (2013).
- G. Ghirardi, L. Marinatto, and T. Weber, J. Stat. Phys. 108, 49 (2002).
- K. Eckert, J. Schliemann, D. Bruss, and M. Lewenstein, Ann. Phys. 299, 88 (2002).
- E. Bocquillon, V. Freulon, J.-M. Berroir, P. Degiovanni, B. Plaçais, A. Cavanna, Y. Jin, and G. Fève, 339, 1054 (2013).
- R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, D. Boiron, and C. I. Westbrook, arXiv:1501.03065 [quant-ph].
- Eq. (15) can be easily established by using Eq. (3), recalling the definition of the anti- symmetric state, and using the Laplace expansion for the matrix determinant.
- We have basically repeated the boson birthday paradox derivation [1, 37], but for a particularly chosen network, not for a Haar-random one.
- Here we note that an identity similar to Eq. (30) is valid for bosons. More generally, in both cases, Π (ε 1 ) ( m) commutes also with I ⊗ S ε 2 due to the second form of Π (ε 1 ) ( m) on the r.h.s. of Eq. (20).