Sequential Correlated Equilibria in Stopping Games
2009, Social Science Research Network
https://doi.org/10.1287/OPRE.1110.1010Abstract
In many situations, such as trade in stock exchanges, agents have many opportunities to act within a short interval of time. The agents in such situations can often coordinate their actions in advance, but coordination during the game consumes too much time. An equilibrium in such situations has to be sequential in order to handle mistakes made by players. In this paper, we present a new solution concept for infinite-horizon dynamic games, which is appropriate for such situations: a sequential normal-form correlated approximate equilibrium. Under additional assumptions, we show that every such game admits this kind of equilibrium.
References (66)
- Assaf, D., E. Samuel-Cahn. 1998a. Optimal cooperative stopping rules for maximization of the product of the expected stopped values. Stat. Probab. Lett. 38(1) 89-99.
- Assaf, D., E. Samuel-Cahn. 1998b. Optimal multivariate stopping rules. J. Appl. Probab. 35(3) 693-706.
- Aumann, R. J. 1974. Subjectivity and correlation in randomized strategies. J. Math. Econom. 1(1) 67-96.
- Aumann, R. J. 1997. Rationality and bounded rationality. Games Econom. Behav. 21(1) 2-14.
- Aumann, R. J., M. Maschler. 1995. Repeated Games with Incomplete Information. MIT Press, Cambridge, MA.
- Ben-Porath, E. 1998. Communication without mediation: Expending the set of equilibrium outcomes by "cheap" pre-play procedures. J. Econom. Theory 80(1) 108-122.
- Bernstein, F., A. Federgruen. 2004. A general equilibrium model for indus- tries with price and service competition. Oper. Res. 52(6) 868-886.
- Bouakiz, M., M. J. Sobel. 1992. Inventory control with an exponential utility criterion. Oper. Res. 40(3) 603-608.
- Bulow, J., P. Klemperer. 2001. The generalized war of attrition. Amer. Econom. Rev. 89(1) 175-189.
- Chatterjee, K., L. Samuelson. 1988. Bargaining under two-sided incom- plete information: The unrestricted offers case. Oper. Res. 36(4) 605-618.
- Christie-David, R., M. Chaudhry, W. Khan. 2002. News releases, mar- ket integration, and market leadership. J. Financial Res. XXV(2) 223-245.
- Dhillon, A., J. F. Mertens. 1996. Perfect correlated equilibria. J. Econom. Theory 68(2) 279-302.
- Dynkin, E. B. 1969. Game variant of a problem on optimal stopping. Soviet Math.-Doklady 10 270-274.
- Ferguson, T. S. 2005. Selection by committee. A. S. Nowak, K. Szajowski, eds. Advances in Dynamic Games: Applications to Economics, Finance, Optimization, and Stochastic Control, Annals of the Interna- tional Society of Dynamic Games, Vol. 7, Part III. Birkhäuser, Boston, 203-209.
- Operations Research 60(1), pp. 209-224, © 2012 INFORMS
- Forges, F. 1986. An approach to communication equilibria. Econometrica 54(6) 1375-1385.
- Fudenberg, D., J. Tirole. 1985. Preemption and rent equalization in the adoption of new technology. Rev. Econom. Stud. LII(3) 383-401.
- Fudenberg, D., J. Tirole. 1986. A theory of exit in duopoly. Econometrica 54(4) 943-960.
- Glickman, H. 2004. Cooperative stopping rules in multivariate problems. Sequential Anal. 23(3) 427-449.
- Heller, Y. 2010a. Minority-proof cheap-talk protocol. Games Econom. Behav. 69(2) 394-400.
- Heller, Y. 2010b. Comment on distribution equilibria. http://www.tau.ac .il/ ~helleryu/distribution.pdf.
- Karlin, S. 1959. Mathematical Methods and Theory in Games, Program- ming and Economics, Vol. 2. Addison-Wesley, Reading, MA.
- Kreps, M. D., R. Wilson. 1982. Sequential equilibria. Econometrica 50(4) 863-894.
- Krishna, V., J. Morgan. 1997. An analysis of the war of attrition and the all-pay auction. J. Econom. Theory 72(2) 343-362.
- Kurano, M., M. Yasuda, J. Nakagami. 1980. Multi-variate stopping prob- lem with a majority rule. J. Oper. Res. Soc. Japan 23 205-223.
- Laraki, R., E. Solan. 2005. The value of zero-sum stopping games in continuous time. SIAM J. Control Optim. 43(5) 1913-1922.
- Maliath, J. G., L. Samuelson, A. Shaked. 1997. Correlated equilibria and local interactions. Econom. Theory 9(3) 551-556.
- Mamer, J. W. 1987. Monotone stopping games. J. Appl. Probab. 24(2) 386-401.
- Mashiah-Yaakovi, A. 2009. Subgame perfect equilibria in stopping games. Working paper, School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel, http://www.math.tau.ac.il/ ~ayalam/ publication.files/general stopping game 3.pdf.
- Maynard Smith, J. 1974. The theory of games and the evolution of animal conflicts. J. Theoret. Biol. 47 209-221.
- Morimoto, H. 1986. Non-zero-sum discrete parameter stochastic games with stopping times. Probab. Theory Related Fields 72(1) 155-160.
- Moulin, H., J. P. Vial. 1978. Strategically zero-sum games: The class of games whose completely mixed equilibria cannot be improved upon. Internat. J. Game Theory 7(3-4) 201-221.
- Myerson, R. B. 1986a. Multistage games with communication. Economet- rica 54(2) 323-358.
- Myerson, R. B. 1986b. Acceptable and predominant correlated equilibria. Internat. J. Game Theory 15(3) 133-154.
- Nalebuff, B., J. G. Riley. 1985. Asymmetric equilibria in the war of attri- tion. J. Theoret. Biol. 113(3) 517-527.
- Neumann, P., D. Ramsey, K. Szajowski. 2002. Randomized stopping times in Dynkin games. J. Appl. Math. Mech. 82(11-12) 811-819.
- Neveu, J. 1975. Discrete-Parameters Martingales. North-Holland, Amsterdam.
- Nikkinen, J., M. Omran, P. Sahlstrom, J. Aijo. 2006. Global stock market reactions to scheduled U.S. macroeconomic news announcements. Global Finance J. 17(1) 92-104.
- Nowak, A. S., K. Szajowski. 1999. Nonzero-sum stochastic games. M. Bardi, T. E. S. Raghavan, T. Parthasarathy, eds. Stochastic and Differential Games. Birkhäuser, Boston, 297-342.
- Ohtsubo, Y. 1991. On a discrete-time non-zero-sum Dynkin problem with monotonicity. J. Appl. Probab. 28(2) 466-472.
- Ohtsubo, Y. 1995. Pareto optimum in a cooperative Dynkin's stopping problem. Nihonkai Math. J. 6(2) 135-151.
- Ohtsubo, Y. 1996. Core in a cooperative Dynkin's stopping problem. RIMS Kokyuroku 947(1) 13-21.
- Ohtsubo, Y. 1998. Pareto optima in a multi-person cooperative stopping problem. RIMS Kokyuroku 1043 184-191.
- Osborne, M. J., A. Rubinstein. 1994. A Course in Game Theory. MIT Press, Cambridge, MA.
- Ramsey, D., D. Cierpial. 2009. Cooperative strategies in stopping games. V. Gaitsgory, P. Bernhard, O. Pourtallier, eds. Advances in Dynamic Games: Applications to Economics, Finance, Optimization, and Stochastic Control. Annals of the International Society of Dynamic Games, Vol. 10. Birkhäuser, Boston, 415-430.
- Ramsey, D., K. Szajowski. 2008. Selection of a correlated equilibrium in Markov stopping games. Eur. J. Oper. Res. 184(1) 185-206.
- Ramsey, D. M. 2007. Correlated equilibria in n-player stopping games. Scientiae Mathematicae Japonicae 66(1) 149-164.
- Ramsey, F. 1930. On a problem of formal logic. Proc. London Math. Soc. 30(1) 264-286.
- Rosenberg, D., E. Solan, N. Vieille. 2001. Stopping games with random- ized strategies. Probab. Theory Related Fields 119(3) 433-451.
- Rubinstein, A. 1991. Comments on the interpretation of game theory. Econometrica 59(4) 909-924.
- Selten, R. 1965. Spieltheoretische behandlung eines oligopolmodells mit nachfrageträgheit. Zeitschrift für die gesamte Staatswissenschaft 121 301-324.
- Selten, R. 1975. Reexamination of the perfectness concept for equilibrium points in extensive games. Internat. J. Game Theory 4(1) 25-55.
- Shmaya, E., E. Solan. 2004. Two-player nonzero-sum stopping games in discrete time. Ann. Probab. 32(3B) 2733-2764.
- Shmida, A., B. Peleg. 1997. Strict and symmetric correlated equilibria are the distributions of the ESS's of biological conflicts with asymmetric roles. W. Albers, W. Guth, P. Hammerstein, B. Moldovanu, E. van Damme, eds. Understanding Strategic Interaction. Springer-Verlag, Berlin, 149-170.
- Solan, E., N. Vieille. 2001. Quitting games. Math. Oper. Res. 26(2) 265-285.
- Solan, E., R. V. Vohra. 2001. Correlated equilibrium in quitting games. Math. Oper. Res. 26(3) 601-610.
- Solan, E., R. V. Vohra. 2002. Correlated equilibrium payoffs and public signaling in absorbing games. Internat. J. Game Theory 31(1) 91-121.
- Sorin, S. 1998. Distribution equilibrium I: Definition and equilibrium. Papers 9835, Paris X-Nanterre, U.F.R. de science economiques ges- tion, mathematiques et informatique, Paris.
- Sorin, S. 2002. First Course on Zero-Sum Repeated Games. Springer, Paris.
- Szajowski, K. 2002. On stopping games when more than one stop is pos- sible.
- V. F. Kolchin, V. Y. Kozlov, V. V. Mazalov, Y. L. Pavlov, Y. V. Prokhorov, eds. Probab. Methods Discrete Math. Proc. 5th Inter- nat. Petrozavodsk Conf. International Science Publishers, Leiden, The Netherlands, 57-72.
- Szajowski, K., M. Yasuda. 1997. Voting procedure on stopping games of Markov chain. A. H. Christer, S. Osaki, L. C. Thomas, eds. UK- Japanese Res. Workshop Stochastic Modeling in Innovative Manu- facturing, July 21-22, 1995. Lecture Notes in Economics and Math- ematical Systems, Vol. 445. Springer, Berlin, 68-80.
- Taylor, T. E., E. L. Plambeck. 2007. Supply chain relationships and con- tracts: The impact of repeated interaction on capacity investment and procurement. Management Sci. 53(10) 1577-1593.
- Urbano, A., J. E. Vila. 2002. Computational complexity and commu- nication: coordination in two-player games. Econometrica 70(5) 1893-1927.
- Yasuda, M., K. Szajowski. 2002. Dynkin game and its extension to a multiple stopping model Bull. Japan Soc. Indust. Math. 12(3) 17-28 (Japanese).
- Yasuda, M., J. Nakagami, M. Kurano. 1982. Multi-variate stopping problem with a monotone rule. J. Oper. Res. Soc. Japan 25(4) 334-350.