Academia.eduAcademia.edu

Outline

{$I\sp{\ast} $}-algebras and their applications

1981, Publications of the Research Institute for Mathematical Sciences

https://doi.org/10.2977/PRIMS/1195186711

Abstract

We analyze the algebraic, topological, and order properties of /*-algebras: complex unital topological *-algebras for which S^/*^/=0 implies #f=0 (Je/), JcJV any finite subset. We consider the ergodic properties of states on an I*-algebra with a distinguished group of automorphisms. Particular attention is given to I*-algebras of the form £=Sf® n £ where E is a nuclear LF-space. When E=^(JR 4) (0(K»)©$(R 3) respectively) then E has applications to relativistic quantum field theory (the canonical anticommutation or commutation relations, respectively).

References (42)

  1. Streater, R. F. and Wightman, A. S., PCT, Spin and Statistics and all that, W. A. Benjamin, New York, 1964.
  2. Emch, G. G., Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley Interscience, New York, 1972.
  3. Ruelle, D., Statistical Mechanics^ W. A. Benjamin, New York, 1969.
  4. Dubin, D. A., Solvable Models in Algebraic Statistical Mechanics, Clarendon Press, Oxford, 1974.
  5. Borchers, H. J., Nuovo Ceimento, 24 (1962), 1118-1140.
  6. Uhlmann, A., Wiss. Z. K.-Marx U. Leipzig, 11 (1962), 213.
  7. Borchers, H. J., Algebraic Aspects of Wightman Field Theory in Statistical Mech- anics and Field Theory, Sen and Neil (eds.), Halsted Press, New York, 1972.
  8. J Yngvason, J., On the algebra of test functions for Wightman field, in C*-Algebras and their Applications to Statistical Mechanics and Quantum Field Theory, D. Kastler (ed.), North-Holland, Amsterdam, 1976.
  9. Borchers, H. J., Algebraic Aspects of Wightman Quantum Field Theory in Ma- thematical Problems in Theoretical Physics^ H. Araki (ed.), Springer, Berlin, 1975.
  10. Lassner, G., Continuous Representations of the Test Function Algebra and the Existence Problem for Quantum Fields, in [9].
  11. Wyss, W., On Wightman's theory of Quantized Fields, Boulder Lecture Notes, 1958.
  12. Naimark, M. A., Normed Algebra, Wotters-Noordhoff, Groningen, 1972.
  13. Schaefer, H. H., Topological Vector Spaces, Springer, Berlin, 1971.
  14. Treves, F., Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.
  15. Randtke, D., Trans. Amer. Math. Soc., 165 (1972), 87-101.
  16. Horvath, J., Topological Vector Spaces and Distributions, I, Addison-Wesley, Read- ing, Mass., 1966.
  17. Grothendieck, A., Produits tensoriels topologiques et espaces nucleaires, Mem. Amer. Math. Soc, 16 (1955).
  18. Warner, G., Harmonic Analysis on Semi-Simple Lie Groups, I, Springer, Berlin, 1972.
  19. Alcantara, J. and Dubin, D. A., Current Commutation Relations as States on an I*-algebra, to appear in Rep. Math, Phys.
  20. Alcantara, J., D. Phil, Thesis, The Open University, 1979.
  21. Yngvason, J., Commun. Math. Phys., 34 (1973), 315-333.
  22. Wyss, W., Commun. Math. Phys., 27 (1972), 223-234.
  23. Peressini, A. L., Ordered Topological Vector Spaces, Harper and Row, New York, 1967.
  24. Ky Fan, J. Math. Anal. AppL, 21 (1968), 475-478.
  25. Lassner, G., Rep. Math. Phys. 3 (1972), 279-293.
  26. Thomas, E., Groningen Report, ZW-7708.
  27. C. R. Acad. Sc. Paris, Serie A, 286 (1978), 515-518.
  28. Mokobodzki, G., Cones Normaux et espaces Nucleaires, Cones Semi-Complets, Semimaire Choquet 7e annee, 1967/68, No. B. 6.
  29. Guichardet, A., Algebres d'observables associees aux relations de commutation, A. Colin, Paris, 1968.
  30. Hegerfeldt, G. C., J. Math. Phys., 13 (1972).
  31. Stunner, E., Asymptotically Abelian Systems in Cargese Lectures, 4, D. Kastler(ed), Gordon and Breach, New York, 1969.
  32. Wilde, I. F., Aspects of Algebraic Quantum Field Theory, University of Sao Paulo, Brasil IFUSP/P-113, 1974.
  33. Powers, R. T, Commun. Math. Phys., 21 (1972), 85-124.
  34. Trans. Amer. Math. Soc., 187 (1974), 261-293.
  35. Saki, S., C*-Algebras and W*-Algebras, Springer, Berlin, 1971.
  36. Garnir, H. G., D. Wilde, M. and Schmets, J., Analyse Fonctionelle, I, Birkhauser, Basel, 1968.
  37. Borchers, H. J. and Yngvason, J., Commun. Math. Phys., 42 (1975), 231-252.
  38. Challifour, J. L. and Slinker, S. P., J. Math. Phys., 18 (1977), 1913-1917.
  39. Yosida, K., Functional Analysis, II edn., Springer-Verlag, Berlin, 1968.
  40. Dubois-Violette, M., These, Orsay, 1976.
  41. Yngvason, J., Habilitationsschrift,, Gottingen, 1978.
  42. Borchers, H. J., Commun. Math. Phys., 1 (1965), 49-56.