Relative commutants of strongly self-absorbing C*-algebras
Abstract
The relative commutant A ′ ∩A U of a strongly self-absorbing algebra A is indistinguishable from its ultrapower A U . This applies both to the case when A is the hyperfinite II1 factor and to the case when it is a strongly self-absorbing C*-algebra. In the latter case we prove analogous results for ℓ∞(A)/c0(A) and reduced powers corresponding to other filters on N. Examples of algebras with approximately inner flip and approximately inner half-flip are provided, showing the optimality of our results. We also prove that strongly self-absorbing algebras are smoothly classifiable, unlike the algebras with approximately inner halfflip.
References (33)
- I. Ben Yaacov, A. Berenstein, C.W. Henson, and A. Usvyatsov, Model theory for metric structures, Model Theory with Applications to Algebra and Analysis, Vol. II (Z. Chatzidakis et al., eds.), London Math. Soc. Lecture Notes Series, no. 350, Cambridge University Press, 2008, pp. 315-427.
- B. Blackadar, Shape theory for C * -algebras, Math. Scand. 56 (1985), no. 2, 249-275.
- N.P. Brown, Topological dynamical systems associated to II1 factors, Adv. Math. 227 (2011), no. 4, 1665-1699, With an appendix by Narutaka Ozawa.
- K. Carlson, E. Cheung, I. Farah, A. Gerhardt-Bourke, B. Hart, L. Mezuman, N. Se- queira, and A. Sherman, Omitting types and AF algebras, Arch. Math. Logic 53 (2014), 157-169.
- A. Connes, Classification of injective factors. Cases II1, II∞, III λ , λ = 1, Ann. of Math. (2) 104 (1976), 73-115.
- J. Cuntz, The internal structure of simple C * -algebras, Operator algebras and appli- cations, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 85-115.
- C. Eagle and A. Vignati, Saturation of C*-algebras, preprint, arXiv:1406.4875, 2014.
- E. G. Effros and J. Rosenberg, C*-algebras with approximately inner flip, Pacific J. Math 77 (1978), no. 2, 417-443.
- I. Farah, Logic and operator algebras, Proceedings of the Seoul ICM, 2014, arXiv:1404.4978.
- I. Farah and B. Hart, Countable saturation of corona algebras, C.R. Math. Rep. Acad. Sci. Canada 35 (2013), 35-56.
- I. Farah, B. Hart, M. Lupini, L. Robert, A. Tikuisis, A. Vignati, and W. Winter, Model theory of nuclear C*-algebras, (2014).
- I. Farah, B. Hart, and D. Sherman, Model theory of operator algebras I: Stability, Bull. London Math. Soc. 45 (2013), 825-838.
- Model theory of operator algebras II: Model theory, Israel J. Math. 201 (2014), 477-505.
- Model theory of operator algebras III: Elementary equivalence and II1 factors, Bull. London Math. Soc. 46 (2014), 1-20.
- I. Farah and S. Shelah, Rigidity of continuous quotients, J. Math. Inst. Jussieu (to appear), arXiv preprint arXiv:1401.6689.
- I. Farah, A.S. Toms, and A. Törnquist, The descriptive set theory of C*-algebra in- variants, Int. Math. Res. Notices 22 (2013), 5196-5226, Appendix with C. Eckhardt.
- Turbulence, orbit equivalence, and the classification of nuclear C*-algebras, J. Reine Angew. Math. 688 (2014), 101-146.
- E. Gardella and M Lupini, Conjugacy and cocycle conjugacy of automorphisms of O2 are not Borel, arXiv preprint arXiv:1404.3617 (2014).
- S. Ghasemi, Reduced products of metric structures: a metric Feferman-Vaught theo- rem, arXiv preprint arXiv:1411.0794 (2014).
- SAW* algebras are essentially non-factorizable, Glasg. Math. J. 57 (2015), no. 1, 1-5.
- K. Jung, Amenability, tubularity, and embeddings into R ω , Mathematische Annalen 338 (2007), no. 1, 241-248.
- E. Kirchberg, Central sequences in C * -algebras and strongly purely infinite algebras, Operator Algebras: The Abel Symposium 2004, Abel Symp., vol. 1, Springer, Berlin, 2006, pp. 175-231.
- E. Kirchberg and N.C. Phillips, Embedding of exact C*-algebras in the Cuntz algebra O2, J. reine angew. Math. 525 (2000), 17-53.
- E. Kirchberg and M. Rørdam, Central sequence C*-algebras and tensorial absorption of the Jiang-Su algebra, Journal für die reine und angewandte Mathematik (Crelle's Journal) 695 (2014), 175?214.
- When central sequence C*-algebras have characters, arXiv preprint arXiv:1409.1395 (2014).
- H. Lin, Approximate unitary equivalence in simple C*-algebras of tracial rank one, Trans. Amer. Math. Soc. 364 (2012), no. 4, 2021-2086.
- H. Matui and Y. Sato, Strict comparison and Z-absorption of nuclear C*-algebras, Acta mathematica 209 (2012), no. 1, 179-196.
- D. McDuff, Central sequences and the hyperfinite factor, Proc. London Math. Soc. 21 (1970), 443-461.
- G. K. Pedersen, The corona construction, Operator Theory: Proceedings of the 1988 GPOTS-Wabash Conference (Indianapolis, IN, 1988), Pitman Res. Notes Math. Ser., vol. 225, Longman Sci. Tech., Harlow, 1990, pp. 49-92.
- N.C. Phillips, A classification theorem for nuclear purely infinite simple C * -algebras, Doc. Math. 5 (2000), 49-114.
- M. Rørdam, Classification of inductive limits of Cuntz algebras, J. Reine Angew. Math. 440 (1993), 175-200.
- Classification of nuclear C * -algebras, Encyclopaedia of Math. Sciences, vol. 126, Springer-Verlag, Berlin, 2002.
- A.S. Toms and W. Winter, Strongly self-absorbing C * -algebras, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3999-4029. Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada, M3J 1P3, and Matematicki Institut, Kneza Mihaila 35, Belgrade, Serbia URL: http://www.math.yorku.ca/∼ifarah E-mail address: ifarah@mathstat.yorku.ca