Characterizations of $C\sp{\ast} $-algebras. II
1970, Transactions of the American Mathematical Society
https://doi.org/10.1090/S0002-9947-1970-0262842-0Abstract
AI
AI
The paper explores conditions under which a complex Banach algebra can be characterized as a C*-algebra, building upon previous work. It provides key results, including a connection to the numerical range of operators, and offers simplified proofs and further implications regarding linear isometry. Additionally, characterizations of complex Banach spaces that relate to commutative C*-algebras are discussed, highlighting geometric descriptions devoid of multiplicative reference.
References (14)
- H. F. Bohnenblust and S. Karlin, Geometrical properties of the unit sphere of Banach algebras, Ann. of Math. (2) 62 (1955), 217-229. MR 17, 177.
- P. Civin and B. Yood, 77ie second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870. MR 26 #622.
- M. M. Day, Normed linear spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 21, Academic Press, New York and Springer-Verlag, Berlin, 1962. MR 26 #2847.
- J. Dixmier, Les C*-algebres et leurs représentations, Gauthiers-Villars, Paris, 1964. MR 30
- R. V. Kadison, A representation theory for commutative topological algebra, Mem. Amer. Math. Soc. No. 7 (1951). MR 13, 360.
- G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43. MR
- T. W. Palmer, Unbounded normal operators on Banach spaces, Thesis, Harvard Univ., Cambridge, Mass., 1965.
- -, Characterizations of C*-algebras, Bull. Amer. Math. Soc. 74 (1968), 538-540. MR 36 #5709.
- A. L. T. Paterson, Isometries between B*-algebras, Proc. Amer. Math. Soc. 22 (1969), 570-572.
- A. L. Peressini, Ordered topological vector spaces, Harper & Row, New York, 1967. MR 37 #3315.
- C. E. Rickart, General theory of banach algebras, Van Nostrand, Princeton, N. J., 1960. MR 22 #5903.
- B. Russo and H. A. Dye, A note on unitary operators in C*-algebras, Duke Math. J. 33 (1966), 413-416. MR 33 #1750.
- I. Vidav, Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math. Z. 66 (1956), 121-128. MR 18, 912.
- J. P. Williams, Spectra of products and numerical ranges, J. Math. Anal. Appl. 17 (1967), 214-220. MR 34 #3341. University of Kansas, Lawrence, Kansas 66044