Academia.eduAcademia.edu

Outline

Characterizations of $C\sp{\ast} $-algebras. II

1970, Transactions of the American Mathematical Society

https://doi.org/10.1090/S0002-9947-1970-0262842-0

Abstract
sparkles

AI

The paper explores conditions under which a complex Banach algebra can be characterized as a C*-algebra, building upon previous work. It provides key results, including a connection to the numerical range of operators, and offers simplified proofs and further implications regarding linear isometry. Additionally, characterizations of complex Banach spaces that relate to commutative C*-algebras are discussed, highlighting geometric descriptions devoid of multiplicative reference.

References (14)

  1. H. F. Bohnenblust and S. Karlin, Geometrical properties of the unit sphere of Banach algebras, Ann. of Math. (2) 62 (1955), 217-229. MR 17, 177.
  2. P. Civin and B. Yood, 77ie second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870. MR 26 #622.
  3. M. M. Day, Normed linear spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 21, Academic Press, New York and Springer-Verlag, Berlin, 1962. MR 26 #2847.
  4. J. Dixmier, Les C*-algebres et leurs représentations, Gauthiers-Villars, Paris, 1964. MR 30
  5. R. V. Kadison, A representation theory for commutative topological algebra, Mem. Amer. Math. Soc. No. 7 (1951). MR 13, 360.
  6. G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43. MR
  7. T. W. Palmer, Unbounded normal operators on Banach spaces, Thesis, Harvard Univ., Cambridge, Mass., 1965.
  8. -, Characterizations of C*-algebras, Bull. Amer. Math. Soc. 74 (1968), 538-540. MR 36 #5709.
  9. A. L. T. Paterson, Isometries between B*-algebras, Proc. Amer. Math. Soc. 22 (1969), 570-572.
  10. A. L. Peressini, Ordered topological vector spaces, Harper & Row, New York, 1967. MR 37 #3315.
  11. C. E. Rickart, General theory of banach algebras, Van Nostrand, Princeton, N. J., 1960. MR 22 #5903.
  12. B. Russo and H. A. Dye, A note on unitary operators in C*-algebras, Duke Math. J. 33 (1966), 413-416. MR 33 #1750.
  13. I. Vidav, Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math. Z. 66 (1956), 121-128. MR 18, 912.
  14. J. P. Williams, Spectra of products and numerical ranges, J. Math. Anal. Appl. 17 (1967), 214-220. MR 34 #3341. University of Kansas, Lawrence, Kansas 66044