Academia.eduAcademia.edu

Outline

Topological Partial *-Algebras: Basic Properties and Examples

1999, Reviews in Mathematical Physics

https://doi.org/10.1142/S0129055X99000106

Abstract

Let [Formula: see text] be a partial *-algebra endowed with a topology τ that makes it into a locally convex topological vector space [Formula: see text]. Then [Formula: see text] is called a topological partial *-algebra if it satisfies a number of conditions, which all amount to require that the topology τ fits with the multiplier structure of [Formula: see text]. Besides the obvious cases of topological quasi *-algebras and CQ*-algebras, we examine several classes of potential topological partial *-algebras, either function spaces (lattices of Lp spaces on [0, 1] or on ℝ, amalgam spaces), or partial *-algebras of operators (operators on a partial inner product space, O*-algebras).

References (39)

  1. J-P. Antoine and A. Grossmann, Partial inner product spaces. I. General properties. II. Operators, J. Funct. Anal. 23 (1976) 369-378, 379-391
  2. J-P. Antoine, Partial inner product spaces. III. Compatibility relations revisited, J. Math. Phys. 21 (1980) 268-279
  3. J-P. Antoine, Partial inner product spaces. IV. Topological considerations, J. Math. Phys. 21 (1980) 2067-2079
  4. J-P. Antoine and K. Gustafson, Partial inner product spaces and semi-inner product spaces, Adv. in Math. 41 (1981) 281-300
  5. J-P. Antoine and W. Karwowski, theory and refinement of nested Hilbert spaces, J. Math. Phys. 22 (1981) 2489-2496
  6. J-P. Antoine and W. Karwowski, Partial *-algebras of closed linear operators in Hilbert space, Publ. RIMS, Kyoto Univ. 21 (1985) 205-236; Add./Err. ibid. 22 (1986) 507-511
  7. J-P. Antoine and F. Mathot, Partial *-algebras of closed operators and their com- mutants. I. General structure, Ann. Inst. H. Poincaré 46 (1987) 299-324
  8. J-P. Antoine, F. Mathot and C. Trapani, Partial *-algebras of closed operators and their commutants. II. Commutants and bicommutants, Ann. Inst. H. Poincaré 46 (1987) 325-351
  9. J-P. Antoine, A. Inoue and C. Trapani, Partial *-algebras of closable operators. I. The basic theory and the abelian case, Publ. RIMS, Kyoto Univ. 26 (1990) 359-395
  10. J-P. Antoine, A. Inoue and C. Trapani, Partial *-algebras of closable operators. II. States and representations of partial *-algebras, Publ. RIMS, Kyoto Univ. 27 (1991) 399-430
  11. J-P. Antoine, A. Inoue and C. Trapani, On the regularity of partial O*-algebras of generated by a closed symmetric operator, Publ. RIMS, Kyoto Univ. 28 (1992) 757-774
  12. J-P. Antoine, A. Inoue and C. Trapani, Partial *-algebras of closable operators: A review, Reviews Math. Phys. 8 (1996) 1-42
  13. J-P. Antoine, Quantum mechanics beyond Hilbert space. Applications to scattering theory, in Quantum Theory in Rigged Hilbert Spaces -Semigroups, Irreversibilty and Causality, A. Böhm, H.D. Doebner and P. Kielanowski (eds.), Springer, Berlin, 1997 (to appear)
  14. J-P. Antoine, F. Bagarello and C. Trapani, Extension of representations in quasi- *algebras, Ann. Inst. H. Poincaré (1998) (to appear)
  15. F. Bagarello and C. Trapani, States and representations of CQ*-algebras, Ann. Inst. H. Poincaré 61 (1994) 103-133
  16. F. Bagarello and C. Trapani, CQ*-algebras: Structure properties, Publ. RIMS, Kyoto Univ. 32 (1996) 85-116
  17. F. Bagarello and C. Trapani, The Heisenberg dynamics of spin systems: A quasi *-algebras approach, J. Math. Phys. 37 (1996) 4219-4234
  18. F. Bagarello, A. Inoue and C. Trapani, Standard CQ*-algebras (in preparation)
  19. F. Bagarello and C. Trapani, L p spaces as quasi *-algebras, J. Math. Anal. Appl. 197 (1996) 810-824
  20. F. Bagarello and C. Trapani, CQ*-algebras of operators in scales of Hilbert spaces (in preparation)
  21. J.J. Benedetto, C. Heil and D.F. Walnut, Differentiation and the Balian-Low theo- rem, J. Fourier Anal. Appl. 1 (1995) 355-402
  22. J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976
  23. H.J. Borchers, Decomposition of families of unbounded operators, in RCP 25 (Stras- bourg) 22 (1975) 26-53; also in Quantum Dynamics: Models and Mathematics (L.Streit,ed.), Acta Phys. Austr. Suppl. 16 (1976) 15
  24. H.W. Davis, F.J. Murray and J.K. Weber, Families of L p spaces with inductive and projective topologies, Pacific J. Math. 34 (1970) 619-638; Inductive and projective limits of L p spaces, Portug. Math. 31 (1972) 21-29
  25. J.J.F. Fournier and J. Stewart, Amalgams of L p and ℓ q , Bull. Amer. Math. Soc. 13 (1985) 1-21
  26. F. Holland, Harmonic analysis on amalgams of L p and ℓ q , J. London Math. Soc. (2) 10 (1975) 295-305
  27. K-D. Kürsten, The completion of the maximal Op*-algebra on a Fréchet domain, Publ. RIMS, Kyoto Univ. 22 (1986) 151-175; On topological linear spaces of operators with a unitary domain of definition, Wiss. Univ-Leipzig, Math.-Naturwiss. R. 39 (1990) 623-655
  28. G. Lassner, Quasi-uniform topologies on local observables, Acta Univ. Wrat. No. 519 (Proc. Karpacz 1979), pp. 44-60; Wroclaw, 1979; β-topologies on operator algebras, in Coll. Int. CNRS No.274, "Algèbres d'opérateurs et leurs applications en physique mathématique" (Marseille 1977), pp. .....
  29. G. Lassner, Topological algebras and their applications in Quantum Statistics, Wiss. Z. KMU-Leipzig, Math.-Naturwiss. R. 30 (1981) 572-595
  30. G. Lassner, Algebras of unbounded operators and quantum dynamics, Physica 124 A (1984) 471-480
  31. F. Mathot, Topological properties of unbounded bicommutants, J. Math. Phys. 26 (1985) 1118-1124
  32. A. Russo and C. Trapani, Quasi *-algebras and multiplication of distributions, J. Math. Anal. Appl. (1997) (to appear)
  33. H.H. Schaefer, Topological Vector Spaces, Springer-Verlag, Berlin, 1971
  34. K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, Akademie- Verlag, Berlin, 1990
  35. B. Simon, The Hermite representation of tempered distributions (???), J. Math. Phys. .. (19..) ...
  36. S. Stratila and L. Zsido, Lectures on Von Neumann algebras, Abacus Press, Tunbridge Wells (England), 1979
  37. C. Trapani, Quasi *-algebras of operators and their applications, Reviews Math. Phys. 7 (1995) 1303-1332
  38. N. Wiener, On the representation of functions by trigonometric integrals, Math. Z. 24 (1926) 575-616; Tauberian theorems, Annals of Math. 33 (1932) 1-100
  39. A.C. Zaanen, Integration, 2nd. ed., Chap. 15; North-Holland, Amsterdam, 1961