Topological Partial *-Algebras: Basic Properties and Examples
1999, Reviews in Mathematical Physics
https://doi.org/10.1142/S0129055X99000106Abstract
Let [Formula: see text] be a partial *-algebra endowed with a topology τ that makes it into a locally convex topological vector space [Formula: see text]. Then [Formula: see text] is called a topological partial *-algebra if it satisfies a number of conditions, which all amount to require that the topology τ fits with the multiplier structure of [Formula: see text]. Besides the obvious cases of topological quasi *-algebras and CQ*-algebras, we examine several classes of potential topological partial *-algebras, either function spaces (lattices of Lp spaces on [0, 1] or on ℝ, amalgam spaces), or partial *-algebras of operators (operators on a partial inner product space, O*-algebras).
References (39)
- J-P. Antoine and A. Grossmann, Partial inner product spaces. I. General properties. II. Operators, J. Funct. Anal. 23 (1976) 369-378, 379-391
- J-P. Antoine, Partial inner product spaces. III. Compatibility relations revisited, J. Math. Phys. 21 (1980) 268-279
- J-P. Antoine, Partial inner product spaces. IV. Topological considerations, J. Math. Phys. 21 (1980) 2067-2079
- J-P. Antoine and K. Gustafson, Partial inner product spaces and semi-inner product spaces, Adv. in Math. 41 (1981) 281-300
- J-P. Antoine and W. Karwowski, theory and refinement of nested Hilbert spaces, J. Math. Phys. 22 (1981) 2489-2496
- J-P. Antoine and W. Karwowski, Partial *-algebras of closed linear operators in Hilbert space, Publ. RIMS, Kyoto Univ. 21 (1985) 205-236; Add./Err. ibid. 22 (1986) 507-511
- J-P. Antoine and F. Mathot, Partial *-algebras of closed operators and their com- mutants. I. General structure, Ann. Inst. H. Poincaré 46 (1987) 299-324
- J-P. Antoine, F. Mathot and C. Trapani, Partial *-algebras of closed operators and their commutants. II. Commutants and bicommutants, Ann. Inst. H. Poincaré 46 (1987) 325-351
- J-P. Antoine, A. Inoue and C. Trapani, Partial *-algebras of closable operators. I. The basic theory and the abelian case, Publ. RIMS, Kyoto Univ. 26 (1990) 359-395
- J-P. Antoine, A. Inoue and C. Trapani, Partial *-algebras of closable operators. II. States and representations of partial *-algebras, Publ. RIMS, Kyoto Univ. 27 (1991) 399-430
- J-P. Antoine, A. Inoue and C. Trapani, On the regularity of partial O*-algebras of generated by a closed symmetric operator, Publ. RIMS, Kyoto Univ. 28 (1992) 757-774
- J-P. Antoine, A. Inoue and C. Trapani, Partial *-algebras of closable operators: A review, Reviews Math. Phys. 8 (1996) 1-42
- J-P. Antoine, Quantum mechanics beyond Hilbert space. Applications to scattering theory, in Quantum Theory in Rigged Hilbert Spaces -Semigroups, Irreversibilty and Causality, A. Böhm, H.D. Doebner and P. Kielanowski (eds.), Springer, Berlin, 1997 (to appear)
- J-P. Antoine, F. Bagarello and C. Trapani, Extension of representations in quasi- *algebras, Ann. Inst. H. Poincaré (1998) (to appear)
- F. Bagarello and C. Trapani, States and representations of CQ*-algebras, Ann. Inst. H. Poincaré 61 (1994) 103-133
- F. Bagarello and C. Trapani, CQ*-algebras: Structure properties, Publ. RIMS, Kyoto Univ. 32 (1996) 85-116
- F. Bagarello and C. Trapani, The Heisenberg dynamics of spin systems: A quasi *-algebras approach, J. Math. Phys. 37 (1996) 4219-4234
- F. Bagarello, A. Inoue and C. Trapani, Standard CQ*-algebras (in preparation)
- F. Bagarello and C. Trapani, L p spaces as quasi *-algebras, J. Math. Anal. Appl. 197 (1996) 810-824
- F. Bagarello and C. Trapani, CQ*-algebras of operators in scales of Hilbert spaces (in preparation)
- J.J. Benedetto, C. Heil and D.F. Walnut, Differentiation and the Balian-Low theo- rem, J. Fourier Anal. Appl. 1 (1995) 355-402
- J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976
- H.J. Borchers, Decomposition of families of unbounded operators, in RCP 25 (Stras- bourg) 22 (1975) 26-53; also in Quantum Dynamics: Models and Mathematics (L.Streit,ed.), Acta Phys. Austr. Suppl. 16 (1976) 15
- H.W. Davis, F.J. Murray and J.K. Weber, Families of L p spaces with inductive and projective topologies, Pacific J. Math. 34 (1970) 619-638; Inductive and projective limits of L p spaces, Portug. Math. 31 (1972) 21-29
- J.J.F. Fournier and J. Stewart, Amalgams of L p and ℓ q , Bull. Amer. Math. Soc. 13 (1985) 1-21
- F. Holland, Harmonic analysis on amalgams of L p and ℓ q , J. London Math. Soc. (2) 10 (1975) 295-305
- K-D. Kürsten, The completion of the maximal Op*-algebra on a Fréchet domain, Publ. RIMS, Kyoto Univ. 22 (1986) 151-175; On topological linear spaces of operators with a unitary domain of definition, Wiss. Univ-Leipzig, Math.-Naturwiss. R. 39 (1990) 623-655
- G. Lassner, Quasi-uniform topologies on local observables, Acta Univ. Wrat. No. 519 (Proc. Karpacz 1979), pp. 44-60; Wroclaw, 1979; β-topologies on operator algebras, in Coll. Int. CNRS No.274, "Algèbres d'opérateurs et leurs applications en physique mathématique" (Marseille 1977), pp. .....
- G. Lassner, Topological algebras and their applications in Quantum Statistics, Wiss. Z. KMU-Leipzig, Math.-Naturwiss. R. 30 (1981) 572-595
- G. Lassner, Algebras of unbounded operators and quantum dynamics, Physica 124 A (1984) 471-480
- F. Mathot, Topological properties of unbounded bicommutants, J. Math. Phys. 26 (1985) 1118-1124
- A. Russo and C. Trapani, Quasi *-algebras and multiplication of distributions, J. Math. Anal. Appl. (1997) (to appear)
- H.H. Schaefer, Topological Vector Spaces, Springer-Verlag, Berlin, 1971
- K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, Akademie- Verlag, Berlin, 1990
- B. Simon, The Hermite representation of tempered distributions (???), J. Math. Phys. .. (19..) ...
- S. Stratila and L. Zsido, Lectures on Von Neumann algebras, Abacus Press, Tunbridge Wells (England), 1979
- C. Trapani, Quasi *-algebras of operators and their applications, Reviews Math. Phys. 7 (1995) 1303-1332
- N. Wiener, On the representation of functions by trigonometric integrals, Math. Z. 24 (1926) 575-616; Tauberian theorems, Annals of Math. 33 (1932) 1-100
- A.C. Zaanen, Integration, 2nd. ed., Chap. 15; North-Holland, Amsterdam, 1961