Academia.eduAcademia.edu

Outline

Proceedings of The Magnificent CE$\nu$NS Workshop 2018

2019, arXiv: High Energy Physics - Experiment

https://doi.org/10.5281/ZENODO.3489190

Abstract

The Magnificent CE$\nu$NS Workshop (2018) was held November 2 & 3 of 2018 on the University of Chicago campus and brought together theorists, phenomenologists, and experimentalists working in numerous areas but sharing a common interest in the process of coherent elastic neutrino-nucleus scattering (CE$\nu$NS). This is a collection of abstract-like summaries of the talks given at the meeting, including links to the slides presented. This document and the slides from the meeting provide an overview of the field and a snapshot of the robust CE$\nu$NS-related efforts both planned and underway.

References (92)

  1. D.Z. Freedman. "Coherent effects of a weak neutral current". Phys. Rev. D 9.5 (1974). doi: 10.1103/ PhysRevD.9.1389.
  2. X. Chen et al. "Open is not enough". Nature Physics 15.2 (2019). doi: 10.1038/s41567-018-0342-2.
  3. T. de Forest Jr and J.D. Walecka. "Electron scattering and nuclear structure". Advances in Physics 15.57 (1966). doi: 10.1080/00018736600101254.
  4. T.W. Donnelly and R.D. Peccei. "Neutral current effects in nuclei". Phys. Rep. 50.1 (1979). doi: 10.1016/0370-1573(79)90010-3.
  5. T.W. Donnelly and W.C. Haxton. "Multipole operators in semileptonic weak and electromagnetic interactions with nuclei: harmonic oscillator single-particle matrix elements". Atom. Data Nucl. Data 23.2 (1979). doi: 10.1016/0092-640X(79)90003-2.
  6. J. Barranco, O.G. Miranda, and T.I. Rashba. "Probing new physics with coherent neutrino scattering off nuclei". J. High Energy Phys. 2005.12 (2005). doi: 10.1088/1126-6708/2005/12/021. arXiv: hep-ph/0508299.
  7. D. Akimov et al. "COHERENT 2018 at the Spallation Neutron Source" (2018). arXiv: 1803.09183 [physics.ins-det].
  8. D. Aristizabal Sierra, V. De Romeri, and N. Rojas. "COHERENT analysis of neutrino generalized interactions". Phys. Rev. D 98 (2018). doi: 10 . 1103 / PhysRevD . 98 . 075018. arXiv: 1806 . 07424 [hep-ph].
  9. Y. Cui, M. Pospelov, and J. Pradler. "Signatures of dark radiation in neutrino and dark matter detectors". Phys. Rev. D 97.10 (2018). doi: 10 . 1103 / PhysRevD . 97 . 103004. arXiv: 1711 . 04531 [hep-ph].
  10. T. Bringmann and M. Pospelov. "Novel Direct Detection Constraints on Light Dark Matter". Phys. Rev. Lett. 122.17 (2019). doi: 10.1103/PhysRevLett.122.171801. arXiv: 1810.10543 [hep-ph].
  11. M. Battaglieri et al. "US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report". In: U.S. Cosmic Visions: New Ideas in Dark Matter College Park, MD, USA, March 23-25, 2017. 2017. arXiv: 1707.04591 [hep-ph]. url: http://lss.fnal.gov/archive/2017/conf/fermilab-conf- 17-282-ae-ppd-t.pdf.
  12. J. Lindhard, V. Nielsen, M. Scharff, and P.V. Thomsen. "Integral Equations Governing Radiation Effects (Notes on Atomic Collisions, III)". Matematisk Fysiske Meddelelser 33.10 (1963).
  13. R. Essig, M. Sholapurkar, and T.-T. Yu. "Solar Neutrinos as a Signal and Background in Direct- Detection Experiments Searching for Sub-GeV Dark Matter With Electron Recoils". Phys. Rev. D 97.9 (2018). doi: 10.1103/PhysRevD.97.095029. arXiv: 1801.10159 [hep-ph].
  14. J. Billard, L. Strigari, and E. Figueroa-Feliciano. "Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments". Phys. Rev. D 89.2 (2014). doi: 10.1103/ PhysRevD.89.023524. arXiv: 1307.5458 [hep-ph].
  15. E. Aprile et al. "The XENON1T Dark Matter Experiment". Eur. Phys. J. C 77.12 (2017). doi: 10.1140/epjc/s10052-017-5326-3. arXiv: 1708.07051 [astro-ph.IM].
  16. R.F. Lang, C. McCabe, S. Reichard, M. Selvi, and I. Tamborra. "Supernova neutrino physics with xenon dark matter detectors: A timely perspective". Phys. Rev. D 94.10 (2016). doi: 10.1103/PhysRevD. 94.103009. arXiv: 1606.09243 [astro-ph.HE].
  17. B.J. Mount et al. "LUX-ZEPLIN (LZ) Technical Design Report" (2017). arXiv: 1703 . 09144 [physics.ins-det].
  18. W.C. Haxton, R.G.H. Robertson, and A.M. Serenelli. "Solar Neutrinos: Status and Prospects". Ann. Rev. Astron. Astrophys. 51 (2013). doi: 10.1146/annurev-astro-081811-125539. arXiv: 1208.5723 [astro-ph.SR].
  19. J. Aalbers et al. "DARWIN: towards the ultimate dark matter detector". J. Cosmol. Astropart. P. 1611 (2016). doi: 10.1088/1475-7516/2016/11/017. arXiv: 1606.07001 [astro-ph.IM].
  20. B. Dutta, S. Liao, L.E. Strigari, and J.W. Walker. "Non-standard interactions of solar neutrinos in dark matter experiments". Phys. Lett. B 773 (2017). doi: 10.1016/j.physletb.2017.08.031. arXiv: 1705.00661 [hep-ph].
  21. C. Kouvaris and J. Pradler. "Probing sub-GeV Dark Matter with conventional detectors". Phys. Rev. Lett. 118.3 (2017). doi: 10.1103/PhysRevLett.118.031803. arXiv: 1607.01789 [hep-ph].
  22. A.B. Migdal. "Ionization of atoms accompanying alpha-and beta-decay". J.Phys. (USSR) 4 (1941).
  23. M. Ibe, W. Nakano, Y. Shoji, and K. Suzuki. "Migdal Effect in Dark Matter Direct Detection Experiments" (2017). arXiv: 1707.07258 [hep-ph].
  24. D.S. Akerib et al. "Results of a Search for Sub-GeV Dark Matter Using 2013 LUX Data". Phys. Rev. Lett. 122.13 (2019). doi: 10.1103/PhysRevLett.122.131301. arXiv: 1811.11241 [astro-ph.CO].
  25. E. Armengaud et al. "Searching for low-mass dark matter particles with a massive Ge bolometer operated above ground". Phys. Rev. D 99.8 (2019). doi: 10 . 1103 / PhysRevD . 99 . 082003. arXiv: 1901.03588 [astro-ph.GA].
  26. M.J. Dolan, F. Kahlhoefer, and C. McCabe. "Directly Detecting Sub-GeV Dark Matter with Electrons from Nuclear Scattering". Phys. Rev. Lett. 121.10 (2018). doi: 10.1103/PhysRevLett.121.101801. arXiv: 1711.09906 [hep-ph].
  27. I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, and T. Schwetz. "Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ 23 , δ CP , and the mass ordering". J. High Energy Phys. 2019.1 (2019). issn: 1029-8479. doi: 10.1007/ JHEP01(2019)106. arXiv: 1811.05487 [hep-ph].
  28. Y. Hayato et al. "Atmospheric Neutrino Results from Super-Kamiokande". Proceedings of Neutrino 2018 (2018). doi: 10.5281/zenodo.1298567.
  29. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, and J. Salvado. "Updated constraints on non-standard interactions from global analysis of oscillation data". J. High Energy Phys. 2018.8 (2018). issn: 1029-8479. doi: 10.1007/JHEP08(2018)180. arXiv: 1805.04530 [hep-ph].
  30. D. Akimov et al. "Observation of coherent elastic neutrino-nucleus scattering". Science 357.6356 (2017). doi: 10.1126/science.aao0990. arXiv: 1708.01294 [nucl-ex].
  31. A. Aguilar-Arevalo et al. "Evidence for neutrino oscillations from the observation of anti- neutrino(electron) appearance in a anti-neutrino(muon) beam". 64 (2001). doi: 10.1103/PhysRevD. 64.112007. arXiv: hep-ex/0104049 [hep-ex].
  32. A.A. Aguilar-Arevalo et al. "Observation of a Significant Excess of Electron-Like Events in the MiniBooNE Short-Baseline Neutrino Experiment". Phys. Rev. Lett. 121 (2018). doi: 10 . 1103 / PhysRevLett.121.221801. arXiv: 1805.12028 [hep-ex].
  33. C. Giunti and M. Laveder. "Statistical Significance of the Gallium Anomaly". Phys. Rev. C 83 (2011). doi: 10.1103/PhysRevC.83.065504. arXiv: 1006.3244 [hep-ph].
  34. G. Mention, M. Fechner, Th. Lasserre, Th.A. Mueller, D. Lhuillier, M. Cribier, and A. Letourneau. "The Reactor Antineutrino Anomaly". Phys. Rev. D 83 (2011). doi: 10.1103/PhysRevD.83.073006. arXiv: 1101.2755 [hep-ex].
  35. S. Gariazzo, C. Giunti, M. Laveder, and Y.F. Li. "Updated Global 3+1 Analysis of Short-BaseLine Neutrino Oscillations". J. High Energy Phys. 06 (2017). doi: 10 . 1007 / JHEP06(2017 ) 135. arXiv: 1703.00860 [hep-ph].
  36. S. Gariazzo, C. Giunti, M. Laveder, and Y.F. Li. "Model-Independent νe Short-Baseline Oscillations from Reactor Spectral Ratios". Phys. Lett. B 782 (2018). doi: 10.1016/j.physletb.2018.04.057. arXiv: 1801.06467 [hep-ph].
  37. Y.J. Ko et al. "Sterile Neutrino Search at the NEOS Experiment". Phys. Rev. Lett. 118 (2017). doi: 10.1103/PhysRevLett.118.121802. arXiv: 1610.05134 [hep-ex].
  38. I. Alekseev et al. "Search for sterile neutrinos at the DANSS experiment". Phys. Lett. B 787 (2018). doi: 10.1016/j.physletb.2018.10.038. arXiv: 1804.04046 [hep-ex].
  39. D.K. Papoulias and T.S. Kosmas. "COHERENT constraints to conventional and exotic neutrino physics". Phys. Rev. D 97 (2018). doi: 10.1103/PhysRevD.97.033003. arXiv: 1711.09773 [hep-ph].
  40. B.C. Cañas, E.A. Garcés, O.G. Miranda, and A. Parada. "The reactor antineutrino anomaly and low energy threshold neutrino experiments". Phys. Lett. B 776 (2018). doi: 10.1016/j.physletb.2017. 11.074. arXiv: 1708.09518 [hep-ph].
  41. C.L. Cowan, F. Reines, F.B. Harrison, H.W. Kruse, and A.D. McGuire. "Detection of the Free Neutrino: a Confirmation". Science 124.3212 (1956). issn: 0036-8075. doi: 10.1126/science.124.3212.103. eprint: https://science.sciencemag.org/content/124/3212/103.full.pdf.
  42. Th.
  43. A. Mueller et al. "Improved predictions of reactor antineutrino spectra". Phys. Rev. C 83.5 (2011). doi: 10.1103/PhysRevC.83.054615. arXiv: 1101.2663 [hep-ex].
  44. P. Huber. "Determination of antineutrino spectra from nuclear reactors". Phys. Rev. C 84.2 (2011). doi: 10.1103/PhysRevC.84.024617. arXiv: 1106.0687 [hep-ph].
  45. P. Huber and P. Jaffke. "Neutron Capture and the Antineutrino Yield from Nuclear Reactors". Phys. Rev. Lett. 116.12 (2016). doi: 10.1103/PhysRevLett.116.122503. arXiv: 1510.08948 [hep-ph].
  46. A. Erickson, B. Conant, and P. Mumm. In preparation (2019).
  47. R. Strauss et al. "The ν-cleus experiment: a gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering". Eur. Phys. J. C 77.8 (2017). doi: 10.1140/epjc/ s10052-017-5068-2. arXiv: 1704.04320 [physics.ins-det].
  48. A. Drukier and L. Stodolsky. "Principles and applications of a neutral-current detector for neutrino physics and astronomy". Phys. Rev. D 30.11 (1984). doi: 10.1103/PhysRevD.30.2295.
  49. R. Strauss et al. "Gram-scale cryogenic calorimeters for rare-event searches". Phys. Rev. D 96.2 (2017). doi: 10.1103/PhysRevD.96.022009. arXiv: 1704.04317 [physics.ins-det].
  50. G. Angloher et al. "Results on light dark matter particles with a low-threshold CRESST-II detector". Eur. Phys. J. C 76.1 (2016). doi: 10.1140/epjc/s10052-016-3877-3.
  51. BASKET Collaboration. BASKET homepage. url: http://irfu.cea.fr/Phocea/Page/index.php? id=861 (visited on 12/17/2018).
  52. E. Armengaud et al. "Performance of the EDELWEISS-III experiment for direct dark matter searches". J. Instrum. 12.08 (2017). doi: 10.1088/1748-0221/12/08/p08010. arXiv: 1706.01070 [physics.ins-det].
  53. A. Phipps, A. Juillard, B. Sadoulet, B. Serfass, and Y. Jin. "A HEMT-based cryogenic charge amplifier with sub-100 eVee ionization resolution for massive semiconductor dark matter detectors". Nucl. Instrum. Meth. A 940 (2019). issn: 0168-9002. doi: 10.1016/j.nima.2019.06.022. arXiv: 1611.09712 [physics.ins-det].
  54. E. Cosulich, F. Gatti, and S. Vitale. "Further results on µ-calorimeters with superconducting absorber". Journal of Low Temperature Physics 93.3 (1993). issn: 1573-7357. doi: 10.1007/BF00693430.
  55. N.E. Booth and D.J. Goldie. "Superconducting particle detectors". Superconductor Science and Technology 9.7 (1996). doi: 10.1088/0953-2048/9/7/001.
  56. R. Maisonobe, J. Billard, M. De Jesus, A. Juillard, D. Misiak, E. Olivieri, S. Sayah, and L. Vagneron. "Vibration decoupling system for massive bolometers in dry cryostats". J. Instrum. 13.08 (2018). doi: 10.1088/1748-0221/13/08/t08009. arXiv: 1803.03463 [physics.ins-det].
  57. P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, and J. Zmuidzinas. "A broadband superconducting detector suitable for use in large arrays". Nature 425.6960 (2003). doi: 10.1038/nature02037.
  58. E.S. Battistelli et al. "CALDER: neutrinoless double-beta decay identification in TeO 2 bolometers with kinetic inductance detectors". Eur. Phys. J. C 75.8 (2015). doi: 10.1140/epjc/s10052-015-3575-6.
  59. L. Cardani et al. "High sensitivity phonon-mediated kinetic inductance detector with combined amplitude and phase read-out". Applied Phys. Lett. 110.3 (2017). doi: 10.1063/1.4974082.
  60. L. Cardani et al. "Al/Ti/Al phonon-mediated KIDs for UV-vis light detection over large areas". Superconductor Science and Technology 31.7 (2018). doi: 10 . 1088 / 1361 -6668 / aac1d4. arXiv: 1801.08403 [physics.ins-det].
  61. A. Mirizzi, I. Tamborra, H.-T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Hudepohl, and S. Chakraborty. "Supernova Neutrinos: Production, Oscillations and Detection". Riv. Nuovo Cim. 39.1-2 (2016). doi: 10.1393/ncr/i2016-10120-8. arXiv: 1508.00785 [astro-ph.HE].
  62. K. Scholberg. "Supernova Neutrino Detection". Annu. Rev. Nucl. Part. S. 62 (2012). doi: 10.1146/ annurev-nucl-102711-095006. arXiv: 1205.6003 [astro-ph.IM].
  63. F. Halzen, J.E. Jacobsen, and E. Zas. "Possibility that high-energy neutrino telescopes could detect supernovae". Phys. Rev. D 49 (1994). doi: 10.1103/PhysRevD.49.1758.
  64. L. Hudepohl, B. Muller, H.-T. Janka, A. Marek, and G.G. Raffelt. "Neutrino Signal of Electron- Capture Supernovae from Core Collapse to Cooling". Phys. Rev. Lett. 104 (2010). [Erratum: Phys. Rev. Lett.105,249901(2010)]. doi: 10.1103/PhysRevLett.104.251101,10.1103/PhysRevLett.105. 249901. arXiv: 0912.0260 [astro-ph.SR].
  65. W.R. Gibbs and J.-P. Dedonder. "Neutron radii of the calcium isotopes". Phys. Rev. C 46.5 (1992). doi: 10.1103/PhysRevC.46.1825.
  66. A. Trzcińska, J. Jastrzebski, P. Lubiński, F.J. Hartmann, R. Schmidt, T. von Egidy, and B. K los. "Neutron Density Distributions Deduced from Antiprotonic Atoms". Phys. Rev. Lett. 87.8 (2001). doi: 10.1103/PhysRevLett.87.082501.
  67. S. Abrahamyan et al. "Measurement of the Neutron Radius of 208 Pb through Parity Violation in Electron Scattering". Phys. Rev. Lett. 108.11 (2012). doi: 10.1103/PhysRevLett.108.112502. arXiv: 1201.2568 [nucl-ex].
  68. K. Patton, J. Engel, G.C. McLaughlin, and N. Schunck. "Neutrino-nucleus coherent scattering as a probe of neutron density distributions". Phys. Rev. C 86.2 (2012). doi: 10.1103/PhysRevC.86.024612. arXiv: 1207.0693 [nucl-th].
  69. K.M. Patton, G.C. McLaughlin, and K. Scholberg. "Prospects for using coherent elastic neutrino- nucleus scattering to measure the nuclear neutron form factor". Int. J. Mod. Phys. E 22.06 (2013). doi: 10.1142/S0218301313300130.
  70. M. Tanabashi et al. "Review of Particle Physics". Phys. Rev. D 98 (2018). doi: 10.1103/PhysRevD. 98.030001.
  71. B.C. Cañas, E.A. Garcés, O.G. Miranda, and A. Parada. "Future perspectives for a weak mixing angle measurement in coherent elastic neutrino nucleus scattering experiments". Phys. Lett. B 784 (2018). doi: 10.1016/j.physletb.2018.07.049. arXiv: 1806.01310 [hep-ph].
  72. D.K. Papoulias and T.S. Kosmas. "Standard and Nonstandard Neutrino-Nucleus Reactions Cross Sections and Event Rates to Neutrino Detection Experiments". Adv. High Energy Phys 2015 (2015). doi: 10.1155/2015/763648. arXiv: 1502.02928 [nucl-th].
  73. T.S. Kosmas, D.K. Papoulias, M. Tortola, and J.W.F. Valle. "Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments". Phys. Rev. D 96.6 (2017). doi: 10.1103/PhysRevD.96.063013. arXiv: 1703.00054 [hep-ph].
  74. T.S. Kosmas, O.G. Miranda, D.K. Papoulias, M. Tortola, and J.W.F. Valle. "Probing neutrino magnetic moments at the Spallation Neutron Source facility". Phys. Rev. D 92.1 (2015). doi: 10 . 1103/PhysRevD.92.013011. arXiv: 1505.03202 [hep-ph].
  75. T.S. Kosmas, O.G. Miranda, D.K. Papoulias, M. Tortola, and J.W.F. Valle. "Sensitivities to neutrino electromagnetic properties at the TEXONO experiment". Phys. Lett. B 750 (2015). doi: 10.1016/j. physletb.2015.09.054. arXiv: 1506.08377 [hep-ph].
  76. D.K. Papoulias, R. Sahu, T.S. Kosmas, V.K.B. Kota, and B. Nayak. "Novel neutrino-floor and dark matter searches with deformed shell model calculations". Adv. High Energy Phys 2018 (2018). doi: 10.1155/2018/6031362. arXiv: 1804.11319 [hep-ph].
  77. T. Suzuki, A.B. Balantekin, T. Kajino, and S. Chiba. "Neutrino-13C Cross Sections at Supernova Neutrino Energies". J. Phys. G46.7 (2019). doi: 10.1088/1361-6471/ab1c11. arXiv: 1904.11291 [nucl-th].
  78. C. Giunti and A. Studenikin. "Neutrino electromagnetic interactions: a window to new physics". Rev. Mod. Phys. 87 (2015). doi: 10.1103/RevModPhys.87.531. arXiv: 1403.6344 [hep-ph].
  79. A.B. Balantekin and B. Kayser. "On the Properties of Neutrinos". Ann. Rev. Nucl. Part. Sci. 68 (2018). doi: 10.1146/annurev-nucl-101916-123044. arXiv: 1805.00922 [hep-ph].
  80. T. Alexander et al. "The Low-Radioactivity Underground Argon Workshop: A workshop synopsis" (2018). arXiv: 1901.10108 [physics.ins-det].
  81. Q. Arnaud et al. "First results from the NEWS-G direct dark matter search experiment at the LSM". Astropart. Phys. 97 (2018). issn: 0927-6505. doi: 10.1016/j.astropartphys.2017.10.009. arXiv: 1706.04934 [astro-ph.IM].
  82. M. Inokuti. "Ionization yields in gases under electron irradiation". Radiat. Res 64.1 (1975). doi: 10.2307/3574165.
  83. D. Combecher. "Measurement of W Values of Low-Energy Electrons in Several Gases". Radiat. Res 84.2 (1980). doi: 10.2307/3575293.
  84. A. Brossard et al. "Spherical proportional counters; development, improvement and understanding". Nucl. Instrum. Meth. A (2018). doi: 10.1016/j.nima.2018.11.037.
  85. D. Baxter et al. "First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering". Phys. Rev. Lett. 118.23 (2017). doi: 10. 1103/PhysRevLett.118.231301. arXiv: 1702.08861 [physics.ins-det].
  86. H. Cao et al. "Measurement of scintillation and ionization yield and scintillation pulse shape from nuclear recoils in liquid argon". Phys. Rev. D 91.9 (2015). doi: 10.1103/PhysRevD.91.092007. arXiv: 1406.4825 [physics.ins-det].
  87. P. Agnes et al. "Simulation of argon response and light detection in the DarkSide-50 dual phase TPC". J. Instrum. 12.10 (2017). doi: 10 . 1088 / 1748 -0221 / 12 / 10 / p10015. arXiv: 1707 . 05630 [physics.ins-det].
  88. P. Agnes et al. "Measurement of the liquid argon energy response to nuclear and electronic recoils". Phys. Rev. D 97.11 (2018). doi: 10 . 1103 / PhysRevD . 97 . 112005. arXiv: 1801 . 06653 [physics.ins-det].
  89. C. Adams et al. "Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm Description and quantitative evaluation with MicroBooNE simulation". J. Instrum. 13.07 (2018). doi: 10.1088/1748-0221/13/07/p07006. arXiv: 1802.08709 [physics.ins-det].
  90. REFERENCES
  91. D.Z. Freedman, D.N. Schramm, and D.L. Tubbs. "The weak neutral current and its effects in stellar collapse". Annu. Rev. Nucl. Sci. 27.1 (1977). doi: 10.1146/annurev.ns.27.120177.001123.
  92. F. Arneodo et al. "Scintillation efficiency of nuclear recoil in liquid xenon". Nucl. Instrum. Meth. A 449.1 (2000). doi: 10.1016/S0168-9002(99)01300-5.