For a matrix polynomial $P(\lambda)$ and two given distinct complex numbers $\mu_{1}$ and $\mu_{2}$, we compute upper and lower bounds for a (spectral norm) distance from $P(\lambda)$ to the set of matrix polynomials that have $\mu_{1}$... more
Previous studies in numerical analysis have shown how the calculation of a Jacobians, Hessians, and their factorizations can be accelerated when their sparsity pattern is known. However, accurate Jacobian and Hessian sparsity patterns... more
Data envelopment analysis with fuzzy complex numbers; with an empirical case on power plants of Iran
Using Data Envelopment Analysis (DEA) in complex environment is an idea that has recently presented for measuring the relative efficiencies of a set of Decision Making Units (DMUs) with complex inputs and outputs. The values of the input... more
In this note, we consider the linear topological invariant e for Fréchet spaces of global analytic functions on Stein manifolds. We show that O (M) ; for a Stein manifold M; enjoys the property e if and only if every compact subset of M... more
In the first part, we generalize the classical result of Bohr by proving that an m Ž analogous phenomenon occurs whenever D is an open domain in ރ or, more . Ž . ϱ generally, a complex manifold and is a basis in the space of holomorphic... more
Wideband characterization of the complex wave number and characteristic impedance of sound absorbers
Several methods for measuring the complex wave number and the characteristic impedance of sound absorbers have been proposed in the literature. These methods can be classified into single frequency and wideband methods. In this paper, the... more
Complex numbers find various applications in the field of engineering. To avoid excessive delays in production of results obtained by implementing divide-and-conquer technique in dealing with arithmetic operations involving this type of... more
Schmoeger has shown that if Weyl's theorem holds for an isoloid Banach space operator T ∈ B(X) with stable index, then it holds for f (T) whenever f ∈ Holo σ(T) is a function holomorphic on some neighbourhood of the spectrum of T. In this... more
Let P and Q be two complex matrices satisfying P 2 = P and Q 2 = Q. If a, b are nonzero complex numbers such that aP + bQ is diagonalizable, we relation the spectrum of aP + bQ with the spectrum of P − Q, P Q, P QP and P Q − QP .
We give some sufficient conditions on complex polynomials P and Q to assure that the algebraic plane curve P (x) − Q(y) = 0 has no irreducible component of genus 0 or 1. Moreover, if deg (P) = deg (Q) and if both P , Q satisfy Hypothesis... more
C .0-contraction Tensor product An operator T ∈ B(H) is called a *-class A operator if |T 2 | |T * | 2 , and T is said to be *-paranormal if T * x 2 T 2 x for every unit vector x in H. In this paper, we show that *-paranormal contractions... more
A Hilbert space operator A ∈ B(H) is said to be p-quasi-hyponormal for some 0 < p 1, A ∈ p − QH , if A * (|A| 2p − |A * | 2p)A 0. If H is infinite dimensional, then operators A ∈ p − QH are not supercyclic. Restricting ourselves to those... more
It is proved that the set theoretic function σ , the spectrum, is continuous on the set C(i) ⊂ B(H i) of operators A for which σ (A) = {0} implies A is nilpotent (possibly, the 0 operator) and A • = λ X 0 B (A • −λ) −1 (0) {(A • −λ) −1... more
The aim of this study is to introduce Vidinli Hüseyin Tevfik Pasha and his triplets in terms of history of mathematics and mathematics education. Vidinli Hüseyin Tevfik Pasha was an Ottoman mathematician during the 19. century and he... more
We establish the existence of rank two Ulrich vector bundles on surfaces that are either of maximal Albanese dimension or with irregularity 1 1 , under many embeddings. In particular, we get the first known examples of Ulrich vector... more
The aim of this study is to introduce Vidinli Hüseyin Tevfik Pasha and his triplets in terms of history of mathematics and mathematics education. Vidinli Hüseyin Tevfik Pasha was an Ottoman mathematician during the 19. century and he... more
In particular, if S is a finite set then M is ca3led a (finite) matroid axiom (4) is redundant.
A Banach space operator T ∈ B(X) is said to be totally hereditarily normaloid, T ∈ THN, if every part of T is normaloid and every invertible part of T has a normaloid inverse. The operator T is said to be an H(q) operator for some integer... more
A Banach space operator T ∈ B(X) satisfies Browder's theorem if the complement of the Weyl spectrum σ w (T) of T in σ (T) equals the set of Riesz points of T ; T is polaroid if the isolated points of σ (T) are poles (no restriction on... more
A Banach space operator T ∈ B(X) is hereditarily polaroid, T ∈ (HP), if the isolated points of the spectrum of every part T p of the operator are poles of the resolvent of T p ; T is hereditarly normaloid, T ∈ (HN), if every part T p of T... more
C .0-contraction Tensor product An operator T ∈ B(H) is called a *-class A operator if |T 2 | |T * | 2 , and T is said to be *-paranormal if T * x 2 T 2 x for every unit vector x in H. In this paper, we show that *-paranormal contractions... more
An inverse method is introduced to construct the problem for the error analysis of the numerical solution of initial value problem. These problems constructed through this method have a known exact solution, even though analytical... more
In this paper we prove that the induced homomorphism between local fundamental groups of germs of normal complex analytic spaces π 0 1 (W) → π 0 1 (W/G) is a surjection, where G is a finite group of automorphisms generated by... more
This paper considers a capacitated vehicle routing problem with fuzzy random travel time and demand (FRVRP). A chance-constrained multiobjective programming is presented based on fuzzy random theory and converted to a crisp equivalent... more
surface. If there is only one connected component D then each connected component Ai of A is a chain of rational curves which intersects a curve Cj of the cycle and for each curve Cj of the cycle there at most one chain which meets Cj. In... more
We prove that if (ϕn) ∞ n=0 , ϕ 0 ≡ 1, is a basis in the space of entire functions of d complex variables, d ≥ 1, then for every compact K ⊂ C d there is a compact K 1 ⊃ K such that for every entire function f = ∞ n=0 fnϕn we have ∞ n=0... more
In 1914 Bohr discovered that there exists r ∈ (0, 1) such that if a power series converges in the unit disk and its sum has modulus less than 1, then for |z| < r the sum of absolute values of its terms is again less than 1. Recently... more
We give a characterization of Stein manifolds M for which the space of analytic functions, 0(M), is isomorphic as Fr~chet spaces to the space of analytic functions on a polydisc interms of the existence of a plurisubharmonic function on M... more
In an arithmetical structure one can make division a total function by defining 1/0 to be an element of the structure, or by adding a new element, such as an error element also denoted with a new constant symbol, an unsigned infinity or... more
In this paper, we are going to define Neutrosophic Boolean rings and study their algebraic structure. A finite Boolean ring satisfies the identity for all , which implies the identity for each positive integer . With this as motivation,... more
In this paper we explore the use of complex numbers as means of representing angular statistics for surface normal data. Our aim is to use the representation to construct a statistical model that can be used to describe the variations in... more
Complex numbers find various applications in the field of engineering. To avoid excessive delays in production of results obtained by implementing divide-and-conquer technique in dealing with arithmetic operations involving this type of... more
We introduce Pura Vida Neutrosophic Algebra, an algebraic structure consisting of neutrosophic numbers equipped with two binary operations namely addition and multiplication. The addition can be calculated sometimes with the function min... more
The aim of this study is to introduce Vidinli Hüseyin Tevfik Pasha and his triplets in terms of history of mathematics and mathematics education. Vidinli Hüseyin Tevfik Pasha was an Ottoman mathematician during the 19. century and he... more
韓国高校の日本語·日本文化教科書における「宗教文化」叙述の特徴と課題
How Japanese Religions are Represented in Japanese Language and Japanese Culture Textbooks in Korean High School
How Japanese Religions are Represented in Japanese Language and Japanese Culture Textbooks in Korean High School
Let X be an infinite-dimensional complex Banach space and denote the set of bounded (compact) linear operators on X by B(X) (K(X)). Let N(A) and R(A) denote, respectively, the null space and the range space of an element A of B{X). Set... more
Students who have learned arithmetic in elementary mathematics would learn algebra in middle schools in earnest. So, the transition from arithmetical thinking to algebraic thinking is an important success factor for algebra learning.... more
Given a Banach space X , let M C ∈ B ( X ⊕ X ) denote the upper triangular operator matrix M C = ( A C 0 B ) , and let δ A B ∈ B ( B ( X ) ) denote the generalized derivation δ A B ( X ) = A X − X B . If lim n → ∞ ∥ δ A B n ( C ) ∥ 1 n =... more