Key research themes
1. How can Boolean network models capture and predict biological system dynamics such as gene regulation and cell differentiation?
This theme explores the use of Boolean networks (BNs) and their extensions to model gene regulatory networks (GRNs), cellular differentiation, and developmental processes. Precise modeling of these biologically complex systems enables prediction of cell states, transitions between phenotypes, and perturbation effects. With Boolean variables representing gene activation states and logical rules encoding regulatory interactions, researchers aim to simulate dynamic attractors corresponding to cell types or behaviors, enabling in silico experiments and better understanding of molecular mechanisms.
2. What theoretical and computational approaches improve understanding of Boolean network dynamics and complexity?
This theme addresses advances in mathematical and algorithmic frameworks to analyze, characterize, and optimize Boolean network dynamics. It includes spectral characterizations relating network function complexity to Fourier transforms, synchronization in probabilistic Boolean networks, computational difficulty of observability, and synthesis of Boolean networks from partial data. These approaches provide the theoretical foundation to analyze network stability, attractors, control, and learnability, with implications for practical inference and control of biochemical and other complex systems.
3. How can structural and dynamical properties of Boolean networks be harnessed for synthesis, control, and learning application in complex systems?
This theme focuses on leveraging network topology, dynamics, and logical function properties to enable automatic synthesis of Boolean networks consistent with behavioral constraints, effective control strategies for cellular reprogramming, and efficient function approximation in machine learning settings. It includes methods for Boolean network synthesis using answer set programming, the application of canalization and redundancy concepts to reduce network complexity, as well as control-oriented modeling of reprogramming paths and reservoir computing frameworks. These contributions connect network structural insights to experimental and computational interventions.